Skip to main content

Advertisement

Log in

Optimization of mechanical strength of titania fibers fabricated by direct drawing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructured polycrystalline titania (TiO2) microfibers were produced by direct drawing from visco-elastic alkoxide precursors. The fiber crystallinity and grain size were shown to depend on post-treatment calcination temperature. Tensile tests with individual fibers showed strong sensitivity of the elastic modulus and the tensile strength to microstructural details of the fibers. The elastic modulus of as-fabricated fibers increased about 10 times after calcination at 700 C, while the strain at failure remained almost the same at ∼1.4 %. The highest tensile strength of more than 800 MPa was exhibited by nanoscale grained fibers with a bimodal grain size distribution consisting of rutile grains embedded into an anatase matrix. This structure is believed to have reduced the critical defect size, and thus increased the tensile strength. The resultant fibers showed properties that were appropriate for reinforcement of different matrixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.J. Park, G.G. Chase, K.U. Jeong, H.Y. Kim, J. Sol-Gel Sci. Technol. 54, 188–194 (2010)

    Article  Google Scholar 

  2. C. Kaya, F. Kaya, E.G. Butler, A.R. Boccaccini, K.K. Chawla, J. Eur. Ceram. Soc. 29, 1631–1639 (2009)

    Article  Google Scholar 

  3. A. Demir, D.Z. Tatli, Composites, Part A, Appl. Sci. Manuf. 35, 1433–1440 (2004)

    Article  Google Scholar 

  4. R. Pärna, U. Joost, E. Nõmmiste, T. Käämbre, A. Kikas, I. Kuusik, M. Hirsimäki, I. Kink, V. Kisand, Appl. Surf. Sci. 15, 6897–6907 (2011)

    Article  Google Scholar 

  5. G. Kermouche, J.L. Loubet, J.M. Bergheau, Mech. Mater. 40, 271–283 (2008)

    Article  Google Scholar 

  6. S.H. Lee, C. Tekmen, W.M. Sigmund, Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 398, 77–81 (2005)

    Article  Google Scholar 

  7. D. Li, Y. Xia, Adv. Mater. 16, 1151–1170 (2004)

    Article  Google Scholar 

  8. G. Larsen, R. Velarde-Ortiz, K. Minchow, A. Barrero, I.G. Loscertales, J. Am. Chem. Soc. 125, 1154–1155 (2003)

    Article  Google Scholar 

  9. W.K. Son, D. Cho, W.H. Park, Nanotechnology 17, 439–443 (2006)

    Article  ADS  Google Scholar 

  10. T. Tatte, M. Paalo, V. Kisand, V. Reedo, A. Kartushinsky, K. Saal, U. Mäeorg, A. Lõhmus, I. Kink, Nanotechnology 18, 125301 (2007)

    Article  ADS  Google Scholar 

  11. L.A. Feigin, D.I. Svergun, Structure Analysis by Small-Angle X-ray and Neutron Scattering (Plenum Press, New York, 1987)

    Book  Google Scholar 

  12. H. Mändar, J. Felsche, V. Mikli, T. Vajakas, J. Appl. Crystallogr. 32, 345–350 (1999)

    Article  Google Scholar 

  13. K. Jonnalagadda, I. Chasiotis, S.Y.J. Lambros, R. Polcawich, J. Pulskamp, M. Dubey, Exp. Mech. 50(1), 25–35 (2010)

    Article  Google Scholar 

  14. P.V. Konarev, M.V. Petoukhov, V.V. Volkov, D.I. Svergun, J. Appl. Crystallogr. 39, 277–286 (2006)

    Article  Google Scholar 

  15. T. Tätte, M. Hussainov, J. Gurauskis, H. Mändar, G. Kelp, R. Rand, M. Paalo, K. Hanschmid, I. Hussainova, in Technical Proceedings of the 2010 NSTI Nanotechnology Conference & Expo—Nanotech 2010. Vol. 2: Nanotechnology 2010: Electronics, Devices, Fabrication, MEMS, Fluidics and Computational, Anaheim, CA, USA, 21–25 June 2010, pp. 245–248. ISBN 978-1-4398-3402-2

    Google Scholar 

  16. T. Tätte, M. Hussainov, M. Paalo, M. Part, R. Talviste, V. Kiisk, H. Mändar, K. Põhako, T. Pehk, K. Reivelt, M. Natali, J. Gurauskis, A. Lõhmus, U. Mäeorg, Sci. Technol. Adv. Mater. 12, 034412 (2011)

    Article  Google Scholar 

  17. S. Sakka, K. Kamiya, Mater. Sci. Res. 17, 83–94 (1984)

    Google Scholar 

  18. J. Aarik, A. Aidla, H. Mändar, T. Uustare, M. Schuisky, A. Hårsta, J. Cryst. Growth 242, 189–198 (2002)

    Article  ADS  Google Scholar 

  19. D.-L. Shieh, C.-H. Ho, J.-L. Lin, Microporous Mesoporous Mater. 109, 362–369 (2008)

    Article  Google Scholar 

  20. J. Craido, C. Real, J. Chem. Soc. Faraday Trans. 79, 2765 (1983)

    Article  Google Scholar 

  21. J.K. Park, J.P. Ahn, G. Kim, Met. Mater. Int. 5, 129–135 (1999)

    Article  Google Scholar 

  22. D.A.H. Hanaor, C.C. Sorrell, J. Mater. Sci. 46, 855–874 (2011)

    Article  ADS  Google Scholar 

  23. I.M. Low, F.K. Yam, W.K. Pang, Mater. Lett. 87, 150–152 (2012)

    Article  Google Scholar 

  24. J. Zhang, M. Li, Z. Feng, J. Chen, C. Li, J. Phys. Chem. B 110, 327–337 (2006)

    Article  Google Scholar 

  25. P.I. Gouma, M.J. Mills, J. Am. Ceram. Soc. 84, 619–622 (2001)

    Article  Google Scholar 

  26. H. Wang, J.P. Lewis, J. Phys. Condens. Matter 18, 421–434 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially founded from European Social Fund’s program DoRa, supported by the European Union through the European Regional Development Fund (Centre of Excellence “Mesosystems: Theory and Applications,” TK114), by Estonian Science Foundation grants 7612, 8377, 9292, 7603, graduate school “Functional materials and processes” funded from the European Social Fund under project 1.2.0401.09-0079 in Estonia, ESF FANAS program NANOPARMA and Centre of Excellence TK117 “High-Technology Materials for Sustainable Development,” and Estonian Research Council grant IUT 2-24.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelli Hanschmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanschmidt, K., Tätte, T., Hussainova, I. et al. Optimization of mechanical strength of titania fibers fabricated by direct drawing. Appl. Phys. A 113, 663–671 (2013). https://doi.org/10.1007/s00339-013-7601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7601-y

Keywords

Navigation