Skip to main content
Log in

Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a theoretical analysis of the processes in thin solid films irradiated by short and ultrashort laser pulses in the regimes of film structuring and laser-induced forward transfer. The regimes are considered at which vaporization of the film materials is insignificant and film dynamics is governed mainly by mechanical processes. Thermoelastoplastic modeling has been performed for a model film in one- and two-dimensional geometries. A method has been proposed to estimate the height of microbumps produced by nanosecond laser irradiation of solid films. Contrary to femtosecond laser pulses, in nanosecond pulse regimes, stress waves across the film are weak and cannot induce film damage. The main role in laser-induced dynamics of irradiated films is played by radial thermal stresses which lead to the formation of a bending wave propagating along the film and drawing the film matter to the center of the irradiation spot. The bending wave dynamics depends on the hardness of the substrate underlying the film. The causes of the receiver substrate damage sometimes observed upon laser-induced forward transfer in the scheme of the direct contact between the film and the receiver are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Pique, H. Kim, C.B. Arnold, in Laser Ablation and Its Application, ed. by C. Phipps (Springer, New York, 2007), p. 339

    Chapter  Google Scholar 

  2. A. Pique, R.C.Y. Auyeung, H. Kim, K.M. Metkus, S.A. Mathews, J. Laser Micro Nanoeng. 3, 163 (2008)

    Article  Google Scholar 

  3. A. Palla-Papavlu, V. Dinca, T. Lippert, M. Dinescu, Rom. Rep. Phys. 63, 1285 (2011)

    Google Scholar 

  4. J. Shaw-Stewart, B. Chu, T. Lippert, Y. Maniglio, M. Nagel, F. Nüesch, A. Wokaun, Appl. Phys. A 105, 713 (2011)

    Article  ADS  Google Scholar 

  5. F. Korte, J. Koch, B.N. Chichkov, Appl. Phys. A 79, 879 (2004)

    Article  ADS  Google Scholar 

  6. Y. Nakata, N. Miyanaga, T. Okada, Appl. Surf. Sci. 253, 6555 (2007)

    Article  ADS  Google Scholar 

  7. J.P. Moening, S.S. Thanawala, D.G. Georgiev, Appl. Phys. A 95, 635 (2010)

    Article  ADS  Google Scholar 

  8. S. Riedel, M. Schmotz, P. Leiderer, J. Boneberg, Appl. Phys. A, Mater. Sci. Process. 101, 309 (2010)

    Article  ADS  Google Scholar 

  9. A.I. Kuznetsov, C. Unger, J. Koch, B.N. Chichkov, Appl. Phys. A 106, 479 (2012)

    Article  ADS  Google Scholar 

  10. S.A. Mathews, R.C.Y. Auyeung, A. Piqué, J. Laser Micro Nanoeng. 2, 103 (2007)

    Article  Google Scholar 

  11. L. Rapp, A.K. Diallo, A.P. Alloncle, C. Videlot-Ackermann, F. Fages, P. Delaporte, Appl. Phys. Lett. 95, 171109 (2009)

    Article  ADS  Google Scholar 

  12. M. Duocastella, J.M. Fernández-Pradas, J. Domínguez, P. Serra, J.L. Morenza, Appl. Phys. A 93, 941 (2008)

    Article  ADS  Google Scholar 

  13. A. Narazaki, T. Sato, R. Kurosaki, Y. Kawaguchi, H. Niino, Appl. Phys. Express 1, 057001 (2008)

    Article  ADS  Google Scholar 

  14. K. Suzuki, Electr. Eng. Jpn. 165, 60 (2008)

    Article  Google Scholar 

  15. C.M. Othon, A. Laracuente, H.D. Ladouceur, B.R. Ringeisen, Appl. Surf. Sci. 255, 3407 (2008)

    Article  ADS  Google Scholar 

  16. T.V. Kononenko, P. Alloncle, V.I. Konov, M. Sentis, Appl. Phys. A 94, 531 (2009)

    Article  ADS  Google Scholar 

  17. H. Sakata, A. Yoshikado, E. Yokoyama, M. Wakaki, Proc. SPIE 7940, 794011 (2011)

    Article  Google Scholar 

  18. D.G. Papazoglou, A. Karaiskou, I. Zergioti, C. Fotakis, Appl. Phys. Lett. 81, 1594 (2002)

    Article  ADS  Google Scholar 

  19. I. Zergioti, D.G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, A. Rode, Appl. Surf. Sci. 208, 177 (2003)

    Article  ADS  Google Scholar 

  20. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, A. Wokaun, J. Phys. Chem. C 113, 11628 (2009)

    Article  Google Scholar 

  21. K.S. Kaur, R. Fardel, T.C. May-Smith, M. Nagel, D.P. Banks, C. Grivas, T. Lippert, R.W. Eason, J. Appl. Phys. 105, 113119 (2009)

    Article  ADS  Google Scholar 

  22. A. Klini, P.A. Loukakos, D. Gray, A. Manousaki, C. Fotakis, Opt. Express 16, 11300 (2008)

    Article  ADS  Google Scholar 

  23. F. Claeyssens, A. Klini, A. Mourka, C. Fotakis, Thin Solid Films 515, 8529 (2007)

    Article  ADS  Google Scholar 

  24. D.A. Willis, V. Grosu, Appl. Surf. Sci. 253, 4759 (2007)

    Article  ADS  Google Scholar 

  25. M.V. Shugaev, N.M. Bulgakova, Appl. Phys. A 101, 103 (2010)

    Article  ADS  Google Scholar 

  26. V.A. Isakov, A.P. Kanavin, A.S. Nasibov, Quantum Electron. 37, 405 (2007)

    Article  ADS  Google Scholar 

  27. D.P. Banks, K. Kaur, R.W. Eason, Appl. Opt. 48, 2058 (2009)

    Article  ADS  Google Scholar 

  28. N.T. Kattamis, M.S. Brown, C.B. Arnold, J. Mater. Res. 26, 2438 (2011)

    Article  ADS  Google Scholar 

  29. G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, H.P. Huber, J. Phys. D, Appl. Phys. 45, 315303 (2012)

    Article  ADS  Google Scholar 

  30. L. Rapp, C. Cibert, S. Nénon, A.P. Alloncle, M. Nagel, T. Lippert, C. Videlot-Ackermann, F. Fages, Ph. Delaporte, Appl. Surf. Sci. 257, 5245 (2011)

    Article  ADS  Google Scholar 

  31. T. Mattle, A. Hintennach, T. Lippert, A. Wokaun, Appl. Phys. A 110, 309 (2013)

    Article  ADS  Google Scholar 

  32. J. Bovatsek, A. Tamhankar, R.S. Patel, N.M. Bulgakova, J. Bonse, Thin Solid Films 518, 2897 (2010)

    Article  ADS  Google Scholar 

  33. G.M. Gladysz, K.K. Chawla, Composites, Part A, Appl. Sci. Manuf. 32, 173 (2001)

    Article  Google Scholar 

  34. http://luxpop.com/

  35. B.M. Drapkin, V.K. Kononenko, Phys. Met. Metallogr. 82, 407 (1996)

    Google Scholar 

  36. W. Shen, C.Y. Tang, W. Li, L.H. Peng, J. Strain Anal. 36, 163 (2001)

    Article  Google Scholar 

  37. Y.P. Meshcheryakov, N.M. Bulgakova, Appl. Phys. A 82, 363 (2006)

    Article  ADS  Google Scholar 

  38. N.M. Bulgakova, I.M. Burakov, Y.P. Meshcheryakov, R. Stoian, A. Rosenfeld, I.V. Hertel, J. Laser Micro Nanoeng. 2, 76 (2007)

    Article  Google Scholar 

  39. S.P. Timoshenko, Course of Theory of Elasticity (Naukova Dumka, Kiev, 1972) (in Russian)

    Google Scholar 

  40. M.L. Wilkins, in Methods in Computational Physics, vol. 3, ed. by B. Adler, S. Fembach, M. Rotenberg (Academic Press, New York, 1964), p. 211

    Google Scholar 

  41. A.V. Fedenev, E.I. Lipatov, V.F. Tarasenko, V.M. Orlovskii, M.A. Shulepov, N.N. Koval’, I.M. Goncharenko, Quantum Electron. 34, 375 (2004)

    Article  ADS  Google Scholar 

  42. T.V. Kononenko, P. Alloncle, V.I. Konov, M. Sentis, Appl. Phys. A 102, 49 (2011)

    Article  ADS  Google Scholar 

  43. D.S. Ivanov, B. Rethfeld, G.M. O’Connor, T.J. Glynn, A.N. Volkov, L.V. Zhigilei, Appl. Phys. A 92, 791 (2008)

    Article  ADS  Google Scholar 

  44. D.S. Ivanov, Zh. Lin, B. Rethfeld, G.M. O’Connor, T.J. Glynn, L.V. Zhigilei, J. Appl. Phys. 107, 013519 (2010)

    Article  ADS  Google Scholar 

  45. D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, B.N. Chichkov, J. Laser Appl. 24, 042017 (2012)

    Article  ADS  Google Scholar 

  46. A.I. Kuznetsov, J. Koch, B.N. Chichkov, Appl. Phys. A 94, 221 (2009)

    Article  ADS  Google Scholar 

  47. M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Opt. Express 20, 10330 (2012)

    Article  ADS  Google Scholar 

  48. M.S. Brown, N.T. Kattamis, C.B. Arnold, Microfluid. Nanofluid. 11, 199 (2011)

    Article  Google Scholar 

  49. A.I. Kuznetsov, R. Kiyan, B.N. Chichkov, Opt. Express 18, 21198 (2010)

    Article  ADS  Google Scholar 

  50. J.E. Coons, P.J. Halley, S.A. McGlashan, T. Tran-Cong, Adv. Colloid Interface Sci. 105, 3 (2003)

    Article  Google Scholar 

  51. M.P. Brenner, X.D. Shi, S.R. Nagel, Phys. Rev. Lett. 73, 3391 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

T.L. and T.M. would like to acknowledge financial support from PSI and the FP7 European project ‘e-LIFT’ (project No. 247868—call FP7-ICT-2009-4). M.V.S. and N.M.B. acknowledge support from the Russian Foundation for Basic Research (RFBR project No. 11-08-00427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda M. Bulgakova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meshcheryakov, Y.P., Shugaev, M.V., Mattle, T. et al. Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer. Appl. Phys. A 113, 521–529 (2013). https://doi.org/10.1007/s00339-013-7563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7563-0

Keywords

Navigation