Skip to main content
Log in

High efficiency organic light-emitting display using selective spectral photo-recycling

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here, we introduce a selective photo-recycling scheme for organic light-emitting diode (OLED) displays. The conventional photo-recycling method, which uses a recycling film named DBEF, diminishes the ambient contrast ratio of the OLED display, so it is not suitable for display applications. The selective recycling scheme, which uses a cholesteric liquid crystal (CLC) layer that recycles light only in a specific spectral range, can minimize the deterioration of the ambient contrast ratio while improving the photo-efficiency. We found that the aperture ratio of the OLED display influences the recycling efficiency significantly, and that a thin CLC layer diminishes the ambient contrast ratio less than a thick CLC layer while it still recycles the emitted light. By recycling the blue spectral range, one can improve the lifetime of blue OLE material, which has the shortest lifetime, or reduce the size of the blue pixel, which has the largest size among red, green, and blue pixels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.R. Forrest, The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004)

    Article  ADS  Google Scholar 

  2. P. Gorrn, M. Sander et al., Towards see-through displays: fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater. 18, 738–741 (2006)

    Article  Google Scholar 

  3. H. Aziz et al., Degradation mechanism of small molecule-based organic light-emitting devices. Science 283, 1900 (1999)

    Article  ADS  Google Scholar 

  4. C.J. Tonzolar, A.P. Kulkarni, A.P. Gifford, W. Kaminsky, S.A. Jenekhe, Blue-light-emitting oligoquinolines: synthesis, properties, and high-efficiency blue-light-emitting diode. Adv. Funct. Mater. 17, 863–874 (2007)

    Article  Google Scholar 

  5. A. Dodabalapur, L.J. Rothberg, T.M. Miller, Color variation with electroluminescent organic semiconductors in multimode resonant cavities. Appl. Phys. Lett. 65, 2308–2310 (1994)

    Article  ADS  Google Scholar 

  6. F.S. Juang, L.H. Laih, C.J. Lin, Y.J. Hus, Angular dependence of the sharply directed emission in organic light emitting diodes with a microcavity structure. Jpn. J. Appl. Phys. 41, 2787–2789 (2002)

    Article  ADS  Google Scholar 

  7. M.A. Baldo, D.F. O’Brien, Excitonic singlet-triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60, 14422–14428 (1999)

    Article  ADS  Google Scholar 

  8. M.H. Lu, J.C. Sturm, Optimization of external coupling and light emission in organic light-emitting devices: modeling and experiment. J. Appl. Phys. 91, 595 (2002)

    Article  ADS  Google Scholar 

  9. S.H. Cho, J.R. Oh et al., Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters. Opt. Express 18(2), 1099 (2010)

    Article  Google Scholar 

  10. S.M. Jeong et al., Highly circularly polarized electroluminescence from organic light-emitting diodes with wide-band reflective polymeric cholesteric liquid crystal films. Appl. Phys. Lett. 90, 211106 (2007)

    Article  ADS  Google Scholar 

  11. B. Park, Y.H. Huh, H.G. Jeon, Polarized electroluminescence from organic light-emitting devices using photon recycling. Opt. Express 18(19), 19824 (2010)

    Article  ADS  Google Scholar 

  12. F. Rahadian, K. Imai, I. Fujieda, Comparative study of organic light emitting diode efficiency enhancement by the use of optical films. Opt. Eng. 46, 124001 (2007)

    Article  ADS  Google Scholar 

  13. B.C. Krummacher, M.K. Mathai, V. Chong, S.A. Choulis, F. So, General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes. J. Appl. Phys. 100, 054702 (2006)

    Article  ADS  Google Scholar 

  14. M.F. Weber, C.A. Stover, L.R. Gilbert, T.J. Nevitt, A.J. Ouderkirk, Giant birefringent optics in multilayer polymer mirrors. Science 287(5462), 2451–2456 (2000) (and references therein)

    Article  ADS  Google Scholar 

  15. J.D. Joannopoulos, P.R. Villeneuve, S. Fan, Photonic crystal: putting a new twist on light. Nature 386, 143–149 (1997)

    Article  ADS  Google Scholar 

  16. H. De Vries, Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr. 4, 219–226 (1951)

    Article  Google Scholar 

  17. S.A. Van Slyke, C.H. Chen, C.W. Tang, Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 69(15), 2160–2162 (1996)

    Article  ADS  Google Scholar 

  18. P. Wellmann, M. Hofmann, O. Zeika et al., High-efficiency p-i-n organic light-emitting diodes with long lifetime. J. Soc. Inf. Disp. 13(5), 393–397 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jang-Kun Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, E., Song, JK. High efficiency organic light-emitting display using selective spectral photo-recycling. Appl. Phys. A 109, 431–436 (2012). https://doi.org/10.1007/s00339-012-7042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7042-z

Keywords

Navigation