Skip to main content
Log in

Properties of bilayer contacts to porous silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of the present work is the growth by PVD techniques and ulterior characterization of electrical contacts to columnar porous silicon (PSi) as an approach to reliable PSi sensor devices. Contacts consist of a NiCr (40:60) and Au bilayer on the PSi surface deposited by magnetron sputtering. These structures show a good adhesion to the rough surface of columnar PSi. The morphology of these electrical contacts is characterized by electron microscopy and their crystalline structure by X-ray diffraction. Compositional profiles are determined by Rutherford backscattering spectroscopy and energy dispersive X-ray spectroscopy, which demonstrate that the infiltration of NiCr into the PSi is at the origin of the metallic thin film adhesion improvement. IV characteristics and impedance spectroscopy measurements show that this configuration provides rectifying electrical contacts to PSi, for which a simple equivalent circuit based on one resistor and two capacitors can be modeled. These results further support the use of PSi electrical structures for sensing purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Torres-Costa, R.J. Martin-Palma, J. Mater. Sci. 45(11), 2823 (2010)

    Article  Google Scholar 

  2. R.S. Dubey, D.K. Gautam, Opt. Quantum Electron. 41(3), 189 (2009)

    Article  Google Scholar 

  3. D. Gallach, G. Recio Sanchez, A. Munoz Noval, M. Manso Silvan, G. Ceccone, R.J. Martin Palma, V. Torres Costa, J.M. Martinez Duart, Mater. Sci. Eng., B, Solid-State Mater. Adv. Technol. 169(1–3, SI), 123 (2010)

    Google Scholar 

  4. G. Recio-Sanchez, M. Manso, V. Torres-Costa, D. Gallach, R.J. Martin-Palma, Sensor Lett. 8(3, SI), 387 (2010)

    Article  Google Scholar 

  5. K. Ziouche, P. Godts, Z. Bougrioua, C. Sion, T. Lasri, D. Leclercq, Sens. Actuators A, Phys. 164(1–2), 35 (2010)

    Article  Google Scholar 

  6. C. Jamois, C. Li, E. Gerelli, Y. Chevolot, V. Monnier, R. Skryshevskyi, R. Orobtchouk, E. Souteyrand, T. Benyattou, in Photonic Crystal Materials and Devices IX, Proceedings of SPIE-The International Society for Optical Engineering, vol. 7713, ed. by H.R. Miguez, S.G. Romanov, L.C. Andreani, C. Seassal, (2010).

    Google Scholar 

  7. S. Lewis, J. DeBoer, J. Gole, P. Hesketh, Sens. Actuators B, Chem. 110(1), 54 (2005)

    Article  Google Scholar 

  8. A. Jane, R. Dronov, A. Hodges, N.H. Voelcker, Trends Biotechnol. 27(4), 230 (2009)

    Article  Google Scholar 

  9. S. Soloviev, T. Das, T. Sudarshan, Electrochem. Solid-State Lett. 6(2), G22 (2003)

    Article  Google Scholar 

  10. F. Ronkel, J. Schultze, R. ArensFischer, Thin Solid Films 276(1–2), 40 (1996)

    Article  ADS  Google Scholar 

  11. M.J. Jawad, M.R. Hashim, N.K. Ali, in Progress of Physics Research in Malaysia: PERFIK2009, AIP Conference Proceedings, vol. 1250, ed. by A.K. Yahya, M.K. Talari, T. Wlnie, M.K. AbdRahman, M.Z.A. Yahya, (2010), pp. 73–76.

    Google Scholar 

  12. H.A. Andersson, G. Thungstrom, H.E. Nilsson, J. Porous Mater. 15(3), 335 (2008)

    Article  Google Scholar 

  13. M.A. Chavarria, F. Fonthal, in CERMA: 2009 Electronics, Robotics and Automotve Mechanics Conference (2009), pp. 287–292

    Chapter  Google Scholar 

  14. A. Munoz-Noval, V. Sanchez-Vaquero, V. Torres-Costa, D. Gallach, M. Manso-Silvan, J.P. Garcia-Ruiz, M. Hernando-Perez, P.J. de Pablo, R.J. Martin-Palma, Journal of Nanophotonics 5 (2011)

  15. S. Zairi, C. Martelet, N. Jaffrezic-Renault, F. Vocanson, R. Lamartine, R. M’Gaieth, H. Maaref, M. Gamoudi, Appl. Phys. A, Mater. Sci. Process. 73, 585 (2001)

    Article  ADS  Google Scholar 

  16. L. Saraf, D. Baer, Z. Wang, J. Young, M. Engelhard, S. Thevuthasan, Surf. Interface Anal. 37(6), 555 (2005)

    Article  Google Scholar 

  17. M. Mayer, in Application of Accelerators in Research and Industry, Pts. 1 and 2, AIP Conference Proceedings, vol. 475, ed. by J.L. Duggan, I.L. Morgan, (1999), pp. 541–544.

    Google Scholar 

  18. W. Lee, Y.B. Kim, Thin Solid Films 517(3), 1191 (2008)

    Article  ADS  Google Scholar 

  19. F. Ruffino, M.G. Grimaldi, Journal of Applied Physics 107(10) (2010)

  20. R. Herino, G. Bomchil, K. Barla, C. Bertrand, J.L. Ginoux, J. Electrochem. Soc. 134(8), 1994 (1987)

    Article  Google Scholar 

  21. A. Patterson, Phys. Rev. 56(10), 978 (1939)

    Article  ADS  MATH  Google Scholar 

  22. V. Lehmann, B. Jobst, T. Muschik, A. Kux, V. Petrovakoch, Jpn. J. Appl. Phys. Part 1 32(5A), 2095 (1993)

    Article  Google Scholar 

  23. D. Bellet, G. Dolino, Thin Solid Films 276(1–2), 1 (1996)

    Article  ADS  Google Scholar 

  24. A. Sethuraman, R. Deangelis, P. Reucroft, Int. J. Mater. Res. 6(4), 749 (1991)

    Article  ADS  Google Scholar 

  25. G.B. Hoflund, W.S. Epling, Thin Solid Films 307(1–2), 126 (1997)

    Article  ADS  Google Scholar 

  26. G.B. Hoflund, W.S. Epling, Chem. Mater. 10(1), 50 (1998)

    Article  Google Scholar 

  27. L. Lassak, K. Hieber, Thin Solid Films 17(1), 105 (1973)

    Article  ADS  Google Scholar 

  28. M. Koltai, O. Geszti, M. Menyhard, Thin Solid Films 116(1-3), 221 (1984)

    Article  ADS  Google Scholar 

  29. R.C. Anderson, R.S. Muller, C.W. Tobias, J. Electrochem. Soc. 138(11), 3406 (1991)

    Article  Google Scholar 

  30. L. Balagurov, S. Bayliss, A. Orlov, E. Petrova, B. Unal, D. Yarkin, J. Appl. Phys. 90(8), 4184 (2001)

    Article  ADS  Google Scholar 

  31. C. RoyChaudhuri, M. Jana, N.R. Bandopadhyay, Phys. Status Solidi, A Appl. Mater. Sci. 207(9), 2137 (2010)

    Article  ADS  Google Scholar 

  32. D.B. Dimitrov, Phys. Rev. B 51, 1562 (1995)

    Article  ADS  Google Scholar 

  33. D. Deresmes, V. Marissael, D. Stievenard, C. Ortega, Thin Solid Films 255(1–2), 258 (1995)

    Article  ADS  Google Scholar 

  34. J. del Río, J. Tagüeña-Martínez, J. Ochoa-Tapia, Solid State Commun. 87(6), 541 (1993)

    Article  Google Scholar 

  35. R.S. Dariani, Z.S. Hosseini, J. Optoelectron. Adv. Mater. 4(10), 1526 (2010)

    Google Scholar 

Download references

Acknowledgements

D. Gallach thanks the Domingo Martínez Foundation for its financial support. C.S. acknowledges the Spanish Ministry of Science and Education for its support via the Ramon y Cajal programme. M.S. thanks the International Iberian Nanotechnology Laboratory (INL Braga, Portugal), for a doctoral grant. This work was partially funded by Projects EUI2008-00172 and MAT2008-06858-C02-01/NAN of the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallach, D., Torres-Costa, V., García-Pelayo, L. et al. Properties of bilayer contacts to porous silicon. Appl. Phys. A 107, 293–300 (2012). https://doi.org/10.1007/s00339-012-6851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6851-4

Keywords

Navigation