Applied Physics A

, Volume 102, Issue 4, pp 791–809

Materials, technologies, and circuit concepts for nanocrossbar-based bipolar RRAM

  • Carsten Kügeler
  • Roland Rosezin
  • Eike Linn
  • Rainer Bruchhaus
  • Rainer Waser
Article

DOI: 10.1007/s00339-011-6287-2

Cite this article as:
Kügeler, C., Rosezin, R., Linn, E. et al. Appl. Phys. A (2011) 102: 791. doi:10.1007/s00339-011-6287-2

Abstract

The paper reports on the characterization of bipolar resistive switching materials and their integration into nanocrossbar structures, as well as on different memory operation schemes in terms of memory density and the challenging problem of sneak paths. TiO2, WO3, GeSe, SiO2 and MSQ thin films were integrated into nanojunctions of 100×100 nm2. The variation between inert Pt and Cu or Ag top electrodes leads to valence change (VCM) switching or electrochemical metallization (ECM) switching and has significant impact on the resistive properties. All materials showed promising characteristics with switching speeds down to 10 ns, multilevel switching, good endurance and retention. Nanoimprint lithography was found to be a suitable tool for processing crossbar arrays down to a feature size of 50 nm and 3D stacking was demonstrated. The inherent occurrence of current sneak paths in passive crossbar arrays can be circumvented by the implementation of complementary resistive switching (CRS) cells. The comparison with other operation schemes shows that the CRS concept dramatically increases the addressable memory size to about 1010 bit.

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Carsten Kügeler
    • 2
    • 3
    • 4
  • Roland Rosezin
    • 2
    • 3
  • Eike Linn
    • 1
    • 3
  • Rainer Bruchhaus
    • 2
    • 3
  • Rainer Waser
    • 1
    • 2
    • 3
  1. 1.Institut für Werkstoffe der Elektrotechnik 2RWTH Aachen UniversityAachenGermany
  2. 2.Peter Grünberg InstitutForschungszentrum JülichJülichGermany
  3. 3.JARA-Fundamentals of Future Information TechnologyJülichGermany
  4. 4.Fraunhofer–IFAMOldenburgGermany

Personalised recommendations