Article

Applied Physics A

, Volume 100, Issue 1, pp 287-296

Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

  • I. ZardoAffiliated withWalter Schottky Institut and Physik Department, Technische Universität München
  • , S. Conesa-BojAffiliated withDepartament d’Electrònica, Universitat de Barcelona
  • , S. EstradéAffiliated withDepartament d’Electrònica, Universitat de Barcelona
  • , L. YuAffiliated withLPICM, Ecole Polytechnique, CNRS
  • , F. PeiroAffiliated withDepartament d’Electrònica, Universitat de Barcelona
  • , P. Roca i CabarrocasAffiliated withLPICM, Ecole Polytechnique, CNRS
  • , J. R. MoranteAffiliated withDepartament d’Electrònica, Universitat de BarcelonaCatalonia Institute for Energy Research
  • , J. ArbiolAffiliated withDepartament d’Electrònica, Universitat de BarcelonaInstitucio Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Ciència de Materials de Barcelona, CSIC
  • , A. Fontcuberta i MorralAffiliated withWalter Schottky Institut and Physik Department, Technische Universität MünchenLaboratoire des Matériaux Semiconducteurs, Institut des Matériaux, Ecole Polytechnique Fédérale de Lausanne Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the <111>, <112> or <001> growth direction. When growing on the <112> and <111> directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm−1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth.