Applied Physics A

, Volume 100, Issue 1, pp 287–296

Growth study of indium-catalyzed silicon nanowires by plasma enhanced chemical vapor deposition

Authors

  • I. Zardo
    • Walter Schottky Institut and Physik DepartmentTechnische Universität München
  • S. Conesa-Boj
    • Departament d’ElectrònicaUniversitat de Barcelona
  • S. Estradé
    • Departament d’ElectrònicaUniversitat de Barcelona
  • L. Yu
    • LPICMEcole Polytechnique, CNRS
  • F. Peiro
    • Departament d’ElectrònicaUniversitat de Barcelona
  • P. Roca i Cabarrocas
    • LPICMEcole Polytechnique, CNRS
  • J. R. Morante
    • Departament d’ElectrònicaUniversitat de Barcelona
    • Catalonia Institute for Energy Research
  • J. Arbiol
    • Departament d’ElectrònicaUniversitat de Barcelona
    • Institucio Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Ciència de Materials de Barcelona, CSIC
    • Walter Schottky Institut and Physik DepartmentTechnische Universität München
    • Laboratoire des Matériaux Semiconducteurs, Institut des MatériauxEcole Polytechnique Fédérale de Lausanne
Article

DOI: 10.1007/s00339-010-5802-1

Cite this article as:
Zardo, I., Conesa-Boj, S., Estradé, S. et al. Appl. Phys. A (2010) 100: 287. doi:10.1007/s00339-010-5802-1
  • 337 Views

Abstract

Indium was used as a catalyst for the synthesis of silicon nanowires in a plasma enhanced chemical vapor deposition reactor. In order to foster the catalytic activity of indium, the indium droplets had to be exposed to a hydrogen plasma prior to nanowire growth in a silane plasma. The structure of the nanowires was investigated as a function of the growth conditions by electron microscopy and Raman spectroscopy. The nanowires were found to crystallize along the <111>, <112> or <001> growth direction. When growing on the <112> and <111> directions, they revealed a similar crystal quality and the presence of a high density of twins along the {111} planes. The high density and periodicity of these twins lead to the formation of hexagonal domains inside the cubic structure. The corresponding Raman signature was found to be a peak at 495 cm−1, in agreement with previous studies. Finally, electron energy loss spectroscopy indicates an occasional migration of indium during growth.

Copyright information

© Springer-Verlag 2010