Applied Physics A

, Volume 100, Issue 1, pp 1–6

Tuning the structural properties of femtosecond-laser-induced nanogratings

Authors

  • Lourdes Patricia R. Ramirez
    • Institute of Applied PhysicsFriedrich-Schiller-Universität Jena
    • Institute of Applied PhysicsFriedrich-Schiller-Universität Jena
  • Sören Richter
    • Institute of Applied PhysicsFriedrich-Schiller-Universität Jena
  • Felix Dreisow
    • Institute of Applied PhysicsFriedrich-Schiller-Universität Jena
  • Robert Keil
    • Institute of Applied PhysicsFriedrich-Schiller-Universität Jena
  • Alexander V. Korovin
    • Max Planck Institute for the Science of Light
  • Ulf Peschel
    • Max Planck Institute for the Science of Light
  • Stefan Nolte
    • Institute of Applied PhysicsFriedrich-Schiller-Universität Jena
    • Fraunhofer Institute for Applied Optics and Precision Engineering
  • Andreas Tünnermann
    • Institute of Applied PhysicsFriedrich-Schiller-Universität Jena
    • Fraunhofer Institute for Applied Optics and Precision Engineering
Invited paper

DOI: 10.1007/s00339-010-5684-2

Cite this article as:
Ramirez, L.P.R., Heinrich, M., Richter, S. et al. Appl. Phys. A (2010) 100: 1. doi:10.1007/s00339-010-5684-2

Abstract

We present the results of our investigations on the formation process of nanogratings in fused silica and the influence of fabrication parameters, thereby identifying ways to systematically control the grating properties. Nanogratings, self-organized nanostructures with subwavelength periodicity, are formed in certain parameter ranges during femtosecond-laser processing of transparent materials, resulting in characteristic birefringent modifications. They provide the opportunity for the fabrication of arbitrary three-dimensional birefringent elements with position-dependent retardation. Based on our findings, we were able to fabricate birefringent elements with various precise retardations in otherwise isotropic fused silica.

Copyright information

© Springer-Verlag 2010