, Volume 96, Issue 2, pp 357-362

Breakdown of the Planck blackbody radiation law at nanoscale gaps

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The Planck theory of blackbody radiation imposes a limit on the maximum radiative transfer between two objects at given temperatures. When the two objects are close enough, near-field effects due to tunneling of evanescent waves lead to enhancement of radiative transfer above the Planck limit. When the objects can support electromagnetic surface polaritons, the enhancement can be a few orders-of-magnitude larger than the blackbody limit. In this paper, we summarize our recent measurements of radiative transfer between two parallel silica surfaces and between a silica microsphere and a flat silica surface that show unambiguous evidence of enhancement of radiative transfer due to near-field effects above the Planck limit.