Applied Physics A

, Volume 83, Issue 2, pp 195–202

Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens

  • P. Tafforeau
  • R. Boistel
  • E. Boller
  • A. Bravin
  • M. Brunet
  • Y. Chaimanee
  • P. Cloetens
  • M. Feist
  • J. Hoszowska
  • J.-J. Jaeger
  • R.F. Kay
  • V. Lazzari
  • L. Marivaux
  • A. Nel
  • C. Nemoz
  • X. Thibault
  • P. Vignaud
  • S. Zabler
Article

DOI: 10.1007/s00339-006-3507-2

Cite this article as:
Tafforeau, P., Boistel, R., Boller, E. et al. Appl. Phys. A (2006) 83: 195. doi:10.1007/s00339-006-3507-2

Abstract

Paleontologists are quite recent newcomers among the users of X-ray synchrotron imaging techniques at the European Synchrotron Radiation Facility (ESRF). Studies of the external morphological characteristics of a fossil organism are not sufficient to extract all the information for a paleontological study. Nowadays observations of internal structures become increasingly important, but these observations should be non-destructive in order to preserve the important specimens. Conventional microtomography allows performing part of these investigations. Nevertheless, the best microtomographic images are obtained using third-generation synchrotrons producing hard X-rays, such as the ESRF. Firstly, monochromatisation avoids beam hardening that is frequently strong for paleontological samples. Secondly, the high beam intensity available at synchrotron radiation sources allows rapid data acquisition at very high spatial resolutions, resulting in precise mapping of the internal structures of the sample. Thirdly, high coherence leads to additional imaging possibilities: phase contrast radiography, phase contrast microtomography and holotomography. These methods greatly improve the image contrast and therefore allow studying fossils that cannot be investigated by conventional microtomography due to a high degree of mineralisation or low absorption contrast. Thanks to these different properties and imaging techniques, a synchrotron radiation source and the ESRF in particular appears as an almost ideal investigation tool for paleontology.

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • P. Tafforeau
    • 1
  • R. Boistel
    • 2
  • E. Boller
    • 1
  • A. Bravin
    • 1
  • M. Brunet
    • 3
  • Y. Chaimanee
    • 4
  • P. Cloetens
    • 1
  • M. Feist
    • 5
  • J. Hoszowska
    • 1
  • J.-J. Jaeger
    • 5
  • R.F. Kay
    • 6
  • V. Lazzari
    • 5
  • L. Marivaux
    • 5
  • A. Nel
    • 7
  • C. Nemoz
    • 1
  • X. Thibault
    • 1
  • P. Vignaud
    • 3
  • S. Zabler
    • 8
  1. 1.European Synchrotron Radiation FacilityGrenoble CedexFrance
  2. 2.Laboratoire de Neurobiologie de l’Apprentissage de la Mémoire et de la Communication, UMR CNRS 8620Université Paris SudOrsay CedexFrance
  3. 3.Laboratoire de Géobiologie Biochronologie et Paléontologie Humaine, UMR CNRS 6046Université de PoitiersPoitiers CedexFrance
  4. 4.Paleontology Section, Geological Survey DivisionDepartment of Mineral ResourcesBangkokThailand
  5. 5.Laboratoire de Paléontologie, Institut des Sciences de l’Evolution, UMR CNRS 5554, cc 064Université de Montpellier IIMontpellier Cedex 5France
  6. 6.Department of Biological, Anthropology and AnatomyDuke UniversityDurhamUSA
  7. 7.CNRS UMR 5143, EntomologieMuséum National d’Histoire NaturelleParisFrance
  8. 8.Department of Materials Science (SF3)Hahn Meitner InstituteBerlinGermany