Skip to main content
Log in

GaS multi-walled nanotubes from the lamellar precursor

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Inorganic fullerene-like (IF) nanotubes constructed from layered metal chalcogenides are of particular significance because of their excellent physical properties and potential application in wide fields. But very few previous studies were focused on the IF nanotubes of layered III-VI semiconductor. Therefore we investigate the preparation, structure and photoluminescence (PL) properties of GaS nanotube (an important III-VI semiconductor IF nanotube). A simple method is introduced to prepare GaS multi-walled nanotubes for the first time by annealing the natural lamellar precursor in Ar. The reaction temperature is crucial for the formation of nanotube. A suitable temperature range is 500–850 °C. Bulk quantities of GaS nanotubes with diameters of 30–150 nm and lengths up to ten micrometers were produced. Some of these nanotubes show corrugated and interlinked structure and form many segments, demonstrating a bamboo-like structure. As compared to bulk materials, the obvious distinction of the products in PL spectra at liquid nitrogen temperature of 77 K was due to the structure variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Iijima: Nature 354, 56 (1991)

    Article  Google Scholar 

  2. N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl: Science 269, 966 (1995)

    CAS  Google Scholar 

  3. Y.R. Hacohen, E. Grunbaum, R. Tenne, J. Sloan, J.L. Huntchison: Nature 395, 336 (1998); R.P. Bire, A. Twersky, Y.R. Hacohen, R. Tenne: Isr. J. Chem. 41, 7 (2001); A.S. Mastai, A.Y. Gedanken: J. Am. Chem. Soc. 122, 4331 (2000)

    Article  Google Scholar 

  4. R. Tenne, L. Margulis, M. Genut, G. Hodes: Nature 360, 444 (1992); Y. Feldman, E. Wasserman, D.J. Srolovitz, R. Tenne: Science 267, 222 (1995); M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, D. Mihailovic: Science 292, 479 (2001); M. Nath, C.N.R. Rao: J. Am. Chem. Soc. 123, 4841 (2001); M. Brorson, T.W. Hansen, C.J.H. Jacobsen: J. Am. Chem. Soc. 124, 11582 (2002); C. Ye, G. Meng, Z. Jiang, Y. Wang, G. Wang, L. Zhang: J. Am. Chem. Soc. 124, 15180 (2002)

    Article  Google Scholar 

  5. P. Hoyer: Adv. Mater. 8, 857 (1996); H.J. Muhr, F. Krumeich, U.P. Schonholzer, F. Bieri, M. Gauckler, L.J. Gauckler, R. Nesper: Adv. Mater. 12, 231 (2000)

    Article  Google Scholar 

  6. J. Chen, N. Kuriyama, H. Yuan, H.T. Takeshita, T. Sakai: J. Am. Chem. Soc. 123, 11813 (2001); J. Chen, S.L. Li, Z. Tao, Y. Shen, C.X. Cui: J. Am. Chem. Soc. 125, 5284 (2003)

    Article  Google Scholar 

  7. J. Chen, S.L. Li, Q. Xu, K. Tanaka: Chem. Comm. 1722 (2002)

  8. E. Ruiz-Hitzky, R. Jimenez, B. Casal, V. Manriquez, A.S. Ana, G. Gonzalez: Adv. Mater. 5, 738 (1993)

    Article  Google Scholar 

  9. M. Homyonfer, B. Alperson, Y. Rosenberg, L. Sapir, S.R. Cohen, G. Hodes, R. Tenne: J. Am. Chem. Soc. 119, 2693 (1997); L. Rapoport, Y. Bilik, Y. Feldman, M. Homyonfer, S.R. Cohen, R. Tenne: Nature 387, 791 (1997)

    Article  Google Scholar 

  10. Y. Feldman, G.L. Frey, M.H. Lyakhovitskaya, M.H. Cohen, G. Hodes, J.L. Hutchison, R. Tenne: J. Am. Chem. Soc. 118, 5362 (1996); A. Rothschild, J. Sloan, R. Tenne: J. Am. Chem. Soc. 122, 5169 (2000); M. Nath, C.N.R. Rao: Chem. Comm. 2236 (2001)

    Article  Google Scholar 

  11. M. Remskar, Z. Skraba, M. Regula, C. Ballif, R. Sanjines, F. Levy: Adv. Mater. 10, 246 (1998)

    Article  Google Scholar 

  12. C.M. Zelenski, P.K. Dorhout: J. Am. Chem. Soc. 120, 734 (1998)

    Article  Google Scholar 

  13. Y.Q. Zhu, W.K. Hsu, N. Grobert, B.H. Chang, M. Terrones, H. Terrones, H.W. Kroto, D.R.M. Walton, Q. Wei: Chem. Mater. 12, 1190 (2000)

    Article  Google Scholar 

  14. A.J. Hollingsworth, D.M. Poojary, A. Clearfield, W.E. Buhro: J. Am. Chem. Soc. 122, 3562 (2000)

    Article  Google Scholar 

  15. M. Genut, L. Margulis, G. Hodes, R. Tenne: Thin Solid Films 217, 97 (1992)

    Article  Google Scholar 

  16. E. Aulich, J.L. Brebner, E. Mooser: Phys. Status Solidi 31, 129 (1969)

    Google Scholar 

  17. A. Mercier, E. Mooser, J.P. Voitchovsky: J. Lumin. 7, 241 (1973)

    Article  Google Scholar 

  18. G. Akhundov, I.G. Aksyanov, G.M. Gasumov: Sov. Phys. Semicond. 3, 767 (1969); M.I. Karaman, V.P. Mushinskii: Sov. Phys. Semicond. 4, 662 (1970); A. Cingolani, A. Minafra, P. Tantalo, C. Paorici: Phys. Status Solidi A 4, 83 (1971)

    Google Scholar 

  19. D. Ugarte: Nature 359, 707 (1992)

    Google Scholar 

  20. J. Moser, H.J. Liao, F. Lèvy: J. Phys. D. Appl. Cryst. 23, 624 (1990)

    Article  Google Scholar 

  21. M.J. Yacamàn, H. Lòpez, P. Santiago, D.H. Galvàn, I.L. Garzòn, A. Reyes: Appl. Phys. Lett. 69, 1065 (1996)

    Article  Google Scholar 

  22. Y.D. Li, X.L. Li, R. He, J. Zhu, Z.X. Deng: J. Am. Chem. Soc. 124, 1411 (2002)

    Article  Google Scholar 

  23. L.Q. Zhang, B.W. Shen, J.Z. Yun, X.Z. Cao, Y.Y. Lv: Series on Inorg. Chem., (Science Press, Beijing 1984)

  24. Y.R. Hacohen, E. Grunbaum, R. Tenne, J. Sloan, J.L. Huntchison: Nature 395, 336 (1998); A.S. Mastai, A.Y. Gedanken: J. Am. Chem. Soc. 122, 4331 (2000)

    Article  Google Scholar 

  25. W.Z. Li, J.G. Wen, Z.F. Ren: Appl. Phys. A 74, 397 (2002); L. Bourgeois, Y. Bando, T. Sato: J. Phys. D. Appl. Phys. 33, 1902 (2000); W.Q. Han, P.K. Redlich, T. Seeger, F. Ernst, N. Grobert, W.K. Hsu, B. Chang, Y.Q. Zhu, H.W. Kroto, D.R.M. Walton, M. Terrones, H. Terrones: Appl. Phys. Lett. 77, 1807 (2000)

    Article  Google Scholar 

  26. M. Nath, A. Govindaraj, C.N.R. Rao: Adv. Mater. 13, 283 (2001)

    Article  Google Scholar 

  27. F.C. Aragon, J.M. Cowly: Acta Cryst. 16, 531 (1963)

    Article  Google Scholar 

  28. A. Mercier, J.P. Voitchovsky: J. Phys. Chem. Solids 36, 1411 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.Q. Liu.

Additional information

PACS

61.46.+w; 81.07.De; 81.16.Be

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, P., Liu, Y., Fu, L. et al. GaS multi-walled nanotubes from the lamellar precursor. Appl. Phys. A 80, 1413–1417 (2005). https://doi.org/10.1007/s00339-004-3187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-004-3187-8

Keywords

Navigation