Skip to main content

Advertisement

Log in

Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Epilithic algal communities play critical ecological roles on coral reefs, but their response to individual and interactive effects of ocean warming (OW) and ocean acidification (OA) is still largely unknown. We investigated growth, photosynthesis and calcification of early epilithic algal community assemblages exposed for 6 months to four temperature profiles (−1.1, ±0.0, +0.9, +1.6 °C) that were crossed with four carbon dioxide partial pressure (pCO2) levels (360, 440, 650, 940 µatm), under flow-through conditions and natural light regimes. Additionally, we compared the cover of heavily calcified crustose coralline algae (CCA) and lightly calcified red algae of the genus Peyssonnelia among treatments. Increase in cover of epilithic communities showed optima under moderately elevated temperatures and present pCO2, while cover strongly decreased under high temperatures and high-pCO2 conditions, particularly due to decreasing cover of CCA. Similarly, community calcification rates were strongly decreased at high pCO2 under both measured temperatures. While final cover of CCA decreased under high temperature and pCO2 (additive negative effects), cover of Peyssonnelia spp. increased at high compared to annual average and moderately elevated temperatures. Thus, cover of Peyssonnelia spp. increased in treatment combinations with less CCA, which was supported by a significant negative correlation between organism groups. The different susceptibility to stressors most likely derived from a different calcification intensity and/or mineral. Notably, growth of the epilithic communities and final cover of CCA were strongly decreased under reduced-pCO2 conditions compared to the present. Thus, CCA may have acclimatized from past to present-day pCO2 conditions, and changes in carbonate chemistry, regardless in which direction, negatively affect them. However, if epilithic organisms cannot further acclimatize to OW and OA, the interacting effects of both factors may change epilithic communities in the future, thereby likely leading to reduced reef stability and recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Albright R, Langdon C, Anthony K (2013) Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10:6747–6758

    Article  CAS  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci U S A 105:17442–17446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chisholm JRM (2000) Calcification by crustose coralline algae on the northern Great Barrier Reef, Australia. Limnol Oceanogr 45:1476–1484

    Article  CAS  Google Scholar 

  • Chisholm JRM (2003) Primary productivity of reef-building crustose coralline algae. Limnol Oceanogr 48:1376–1387

    Article  Google Scholar 

  • Chisholm JRM, Gattuso JP (1991) Validation of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral-reef communities. Limnol Oceanogr 36:1232–1239

    Article  CAS  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 465–570

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1029–1136

  • Comeau S, Edmunds PJ, Spindel NB, Carpenter RC (2013) The responses of eight coral reef calcifiers to increasing partial pressure of CO2 do not exhibit a tipping point. Limnol Oceanogr 58:388–398

    Article  CAS  Google Scholar 

  • Diaz-Pulido G, Harii S, McCook L, Hoegh-Guldberg O (2010) The impact of benthic algae on the settlement of a reef-building coral. Coral Reefs 29:203–208

    Article  Google Scholar 

  • Diaz-Pulido G, Gouezo M, Tilbrook B, Dove S, Anthony K (2011) High CO2 enhances the competitive strength of seaweeds over corals. Ecol Lett 14:156–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Diaz-Pulido G, Anthony K, Kline DI, Dove S, Hoegh-Guldberg O (2012) Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J Phycol 48:32–39

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Pulido G, Nash MC, Anthony KR, Bender D, Opdyke BN, Reyes-Nivia C, Troitzsch U (2014) Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Nat Commun 5. doi:10.1038/ncomms4310

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES special publication 3, North Pacific Marine Sciences Association, 191 pp

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192

    Article  PubMed  Google Scholar 

  • Donner SD, Skirving WJ, Little CM, Oppenheimer M, Hoegh-Guldberg O (2005) Global assessment of coral bleaching and required rates of adaptation under climate change. Glob Chang Biol 11:2251–2265

    Article  Google Scholar 

  • Fabricius KE, De’ath G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309

    Article  Google Scholar 

  • Fabricius K, Kluibenschedl A, Harrington L, Noonan S, De’ath G (2015) In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Sci Rep 5 [doi:10.1038/srep09537]

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Gattuso JP, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46

    Article  Google Scholar 

  • Harrington L, Fabricius K, De’Ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428–3437

    Article  Google Scholar 

  • Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hönisch B, Hemming NG, Archer D, Siddall M, McManus JF (2009) Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324:1551–1554

    Article  PubMed  Google Scholar 

  • James N, Wray J, Ginsburg R (1988) Calcification of encrusting aragonitic algae (Peyssonneliaceae): implications for the origin of Late Paleozoic reefs and cements. J Sediment Res 58:291–303

    CAS  Google Scholar 

  • James RK, Hepburn CD, Cornwall CE, McGraw CM, Hurd CL (2014) Growth response of an early successional assemblage of coralline algae and benthic diatoms to ocean acidification. Mar Biol 161:1687–1696

    Article  CAS  Google Scholar 

  • Johnson MD, Carpenter RC (2012) Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. J Exp Mar Bio Ecol 434:94–101

    Article  Google Scholar 

  • Johnson MD, Moriarty VW, Carpenter RC (2014) Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PloS One 9:e87678

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 953–1028

  • Klumpp DD, McKinnon DA (1992) Community structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef: dynamics at different spatial scales. Mar Ecol Prog Ser 86:77–89

    Article  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2007) Decreased abundance of crustose coralline algae due to ocean acidification. Nat Geosci 1:114–117

    Article  Google Scholar 

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Lewis E, Wallace DWR, Allison LJ (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge, TN, USA

    Book  Google Scholar 

  • Linares C, Vidal M, Canals M, Kersting D, Amblas D, Aspillaga E, Cebrián E, Delgado-Huertas A, Díaz D, Garrabou J (2015) Persistent natural acidification drives major distribution shifts in marine benthic ecosystems. Proc R Soc Lond B Biol Sci 282:20150587

    Article  CAS  Google Scholar 

  • Littler DS, Littler MM (2003) South Pacific reef plants: a divers’ guide to the plant life of South Pacific coral reefs. Offshore Graphics Inc., University of California, CA, USA

    Google Scholar 

  • Littler MM, Littler DS (1984) Models of tropical reef biogenesis: the contribution of algae. Prog Phycol Res 3:323–364

    Google Scholar 

  • Martin S, Gattuso JP (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Chang Biol 15:2089–2100

    Article  Google Scholar 

  • Martin S, Castets M-D, Clavier J (2006) Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquat Bot 85:121–128

    Article  CAS  Google Scholar 

  • Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, Rouco JG, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborne T, Otto-Bliesner B, Quinn T, Ramesh R, Rojas M, Shao X, Timmermann A (2013) Information from paleoclimate archives. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 383–464

  • Mehrbach C, Culberson CH, Halwey JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  CAS  PubMed  Google Scholar 

  • Nash MC, Opdyke BN, Troitzsch U, Russell BD, Adey WH, Kato A, Diaz-Pulido G, Brent C, Gardner M, Prichard J (2013) Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nat Clim Chang 3:268–272

    Article  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  PubMed  Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Bio Ecol 400:278–287

    Article  CAS  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Riebesell U, Gattuso J-P (2015) Lessons learned from ocean acidification research. Nat Clim Chang 5:12–14

    Article  CAS  Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Semesi IS, Kangwe J, Bjork M (2009) Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp (Rhodophyta). Estuar Coast Shelf Sci 84:337–341

    Article  CAS  Google Scholar 

  • Shaw EC, McNeil BI, Tilbrook B, Matear R, Bates ML (2013) Anthropogenic changes to seawater buffer capacity combined with natural reef metabolism induce extreme future coral reef CO2 conditions. Glob Chang Biol 19:1632–1641

    Article  PubMed  Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA 1535 pp

  • Tans P, Keeling R (2015) Trends in atmospheric carbon dioxide: recent global CO2. NOAA/ESRL, www.esrl.noaa.gov/gmd/ccgg/trends/

  • Uthicke S, Fabricius KE (2012) Productivity gains do not compensate for reduced calcification under near-future ocean acidification in the photosynthetic benthic foraminifer species Marginopora vertebralis. Glob Chang Biol 18:2781–2791

    Article  PubMed  Google Scholar 

  • Uthicke S, Furnas M, Lønborg C (2014) Coral reefs on the edge? Carbon chemistry on inshore reefs of the Great Barrier Reef. PloS One 9:e109092

    Article  PubMed  PubMed Central  Google Scholar 

  • Uthicke S, Pecorino D, Albright R, Negri AP, Cantin N, Liddy M, Dworjanyn S, Kamya P, Byrne M, Lamare M (2013) Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PloS One 8:e82938

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Jordan Hollarsmith, Emmett Clarkin, Camille Domy, Cassy Thompson, Patrick Buerger, Kathryn Berry, Laura Arthur and Caroline Assailly for their great help in maintaining the experimental system. Many thanks to the staff at the SeaSim facility and the AIMS workshop, Andrea Severati, Tom Barker, Paul Boyd, Craig Humphrey, Eneour Puill-Stephan, Grant Milton, Justin Hochen, Niall Jeeves, Michael Kebben and Gary Brinkman who contributed to the aquarium design, control systems and monitoring of the experimental conditions. Thanks to Lindsay Harrington for her help with the identification of CCA and epilithic organisms. Thanks to Michelle Liddy and Florita Flores for their help with the incubation experiments and general assistance. This study was funded by the Australian Institute of Marine Science, the Australian Government’s National Environmental Research Program and a Super Science Fellowship Grant from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vogel.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Net photosynthesis, dark respiration, gross photosynthesis and light, dark and net calcification of epilithic communities after six months of temperature and acidification treatment. Data are normalized to the surface area of the substrate (EPS 945 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, N., Cantin, N.E., Strahl, J. et al. Interactive effects of ocean acidification and warming on coral reef associated epilithic algal communities under past, present-day and future ocean conditions. Coral Reefs 35, 715–728 (2016). https://doi.org/10.1007/s00338-015-1392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1392-x

Keywords

Navigation