Skip to main content

Advertisement

Log in

Effects of seawater acidification on a coral reef meiofauna community

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Despite the increasing risk that ocean acidification will modify benthic communities, great uncertainty remains about how this impact will affect the lower trophic levels, such as members of the meiofauna. A mesocosm experiment was conducted to investigate the effects of water acidification on a phytal meiofauna community from a coral reef. Community samples collected from the coral reef subtidal zone (Recife de Fora Municipal Marine Park, Porto Seguro, Bahia, Brazil), using artificial substrate units, were exposed to a control pH (ambient seawater) and to three levels of seawater acidification (pH reductions of 0.3, 0.6, and 0.9 units below ambient) and collected after 15 and 30 d. After 30 d of exposure, major changes in the structure of the meiofauna community were observed in response to reduced pH. The major meiofauna groups showed divergent responses to acidification. Harpacticoida and Polychaeta densities did not show significant differences due to pH. Nematoda, Ostracoda, Turbellaria, and Tardigrada exhibited their highest densities in low-pH treatments (especially at the pH reduction of 0.6 units, pH 7.5), while harpacticoid nauplii were strongly negatively affected by low pH. This community-based mesocosm study supports previous suggestions that ocean acidification induces important changes in the structure of marine benthic communities. Considering the importance of meiofauna in the food web of coral reef ecosystems, the results presented here demonstrate that the trophic functioning of coral reefs is seriously threatened by ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Araújo-Castro CMV, Souza-Santos LP (2005) Are the diatoms Navicula sp. and Thalassiosira fluviatilis suitable to be fed to the benthic harpacticoid copepod Tisbe biminiensis? J Exp Mar Biol Ecol 327:58–69

    Article  Google Scholar 

  • Barry JP, Buck KR, Lovera CF, Kuhnz L, Whaling PJ, Peltzer ET, Walz P, Brewer PG (2004) Effects of direct ocean CO2 injection on deep-sea meiofauna. J Oceanogr 60:759–766

    Article  CAS  Google Scholar 

  • Berkström C, Jones GP, McCormick MI, Srinivasan M (2012) Ecological versatility and its importance for the distribution and abundance of coral reef wrasses. Mar Ecol Prog Ser 461:151–163

    Article  Google Scholar 

  • Bibby R, Cleall-Harding P, Rundle S, Widdicombe S, Spicer J (2007) Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biol Lett 3:699–701

    Article  PubMed Central  PubMed  Google Scholar 

  • Birkeland C (1997) Life and death of coral reefs. Chapman and Hall, New York

    Book  Google Scholar 

  • Bishop MJ (2005) Artificial sampling units: a tool for increasing the sensitivity of tests for impact in soft sediments. Environ Monit Assess 107:203–220

    Article  PubMed  Google Scholar 

  • Byrne M (2012) Global change ecotoxicology: Identification of early life history bottlenecks in marine invertebrates, variable species responses and variable experimental approaches. Mar Environ Res 76:3–15

    Article  CAS  PubMed  Google Scholar 

  • Byrne M, Lamare M, Winter D, Dworjanyn SA, Uthicke S (2013) The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles. Philos Trans R Soc Lond B Biol Sci 368:20120439

    Article  PubMed Central  PubMed  Google Scholar 

  • Caldeira K, Wickett M (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Caldeira K, Wickett M (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:1–12

    Google Scholar 

  • Calosi P, Rastrick SPS, Lombardi C, Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JD, Schulze A, Spicer JI, Gambi MC (2013) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Proc R Soc Lond B Biol Sci 368:20120444

    Article  Google Scholar 

  • Carman KR, Thistle D, Fleeger JW, Barry JP (2004) Influence of introduced CO2 on deep-sea metazoan meiofauna. J Oceanogr 60:767–772

    Article  CAS  Google Scholar 

  • Castro P, Huber ME (2010) Marine Biology, 8th edn. The McGraw-Hill Companies, New York

    Google Scholar 

  • Ceballos-Osuna L, Carter HA, Miller NA, Stillman JH (2013) Effects of ocean acidification on early life-history stages of the intertidal porcelain crab Petrolisthes cinctipes. J Exp Biol 216:1405–1411

    Article  CAS  PubMed  Google Scholar 

  • Christen N, Calosi P, McNeill CL, Widdicombe S (2013) Structural and functional vulnerability to elevated pCO2 in marine benthic communities. Mar Biol 160:2113–2128

    Article  CAS  Google Scholar 

  • Cigliano M, Gambi MC, Rodolfo-Metalpa R, Patti FP, Hall-Spencer JM (2010) Effects of ocean acidification on invertebrate settlement at volcanic CO2 vents. Mar Biol 157:2489–2502

    Article  Google Scholar 

  • Cumbo VR, Fan TY, Edmunds PJ (2013) Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2. J Exp Mar Bio Ecol 439:100–107

    Article  Google Scholar 

  • Dahl U, Lind CR, Gorokhova E, Eklund B, Breitholtz M (2009) Food quality effects on copepod growth and development: Implications for bioassays in ecotoxicological testing. Ecotoxicol Environ Saf 72:351–357

    Article  CAS  PubMed  Google Scholar 

  • Danovaro R, Scopa M, Gambi C, Franschetti S (2007) Trophic importance of subtidal metazoan meiofauna: evidence from in situ exclusion experiments on soft and rocky substrates. Mar Biol 152:339–350

    Article  Google Scholar 

  • Dashfield SL, Somerfield PJ, Widdicombe S, Austen MC, Nimmo M (2008) Impacts of ocean acidification and burrowing urchins on within-sediment pH profiles and subtidal nematode communities. J Exp Mar Bio Ecol 365:46–52

    Article  CAS  Google Scholar 

  • De Troch M, Vandepitte L, Raes M, Suárez-Morales E, Vincx M (2005) A field colonization experiment with meiofauna and seagrass mimics: effect of time, distance and leaf surface area. Mar Biol 148:73–86

    Article  Google Scholar 

  • De’ath G, Fabricius K, Lough J (2013) Yes – Coral calcification rates have decreased in the last twenty-five years! Mar Geol 346:400–402

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, Sidney

  • Dupont S, Thorndyke MC (2009) Impact of CO2-driven ocean acidification on invertebrates early life-history – What we know, what we need to know and what we can do. Biogeosci Discuss 6:3109–3131

    Article  Google Scholar 

  • Dupont S, Dorey N, Thorndyke MC (2010) What meta-analysis can tell us about vulnerability of marine biodiversity to ocean acidification? Estuar Coast Shelf Sci 89:182–185

    Article  Google Scholar 

  • Ellis RP, Bersey J, Rundle SD, Hall-Spencer JM, Spicer JI (2009) Subtle but significant effects of CO2 acidified seawater on embryos of the intertidal snail, Littorina obtusata. Aquat Biol 5:41–48

    Article  Google Scholar 

  • Fabricius K, De’ath G (2001) Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303–309

    Article  Google Scholar 

  • Fabricius KE, De’ath G, Noonan S, Uthicke S (2014) Ecological effects of ocean acidification and habitat complexity on reef-associated macroinvertebrate communities. Proc R Soc Lond B Biol Sci 281:20132479

    Article  CAS  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Chang 1:165–169

    Article  CAS  Google Scholar 

  • Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22:36–47

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  CAS  PubMed  Google Scholar 

  • Findlay HS, Kendall MA, Spicer JI, Widdicombe S (2010) Post-larval development of two intertidal barnacles at elevated CO2 and temperature. Mar Biol 157:725–735

    Article  Google Scholar 

  • Fitzer SC, Caldwell GS, Clare AS, Upstill-Goddard RC, Bentley MG (2013) Response of copepods to elevated pCO2 and environmental copper as co-stressors – A multigenerational study. PLoS One 8:e71257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fitzer SC, Caldwell GS, Close AJ, Clare AS, Upstill-Goddard RC, Bentley MG (2012) Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J Exp Mar Bio Ecol 418–419:30–36

    Article  Google Scholar 

  • Fleeger JW, Johnson DS, Carman KR, Weisenhorn PB, Gabriele A, Thistle D, Barry JP (2010) The response of nematodes to deep-sea CO2 sequestration: A quantile regression approach. Deep Sea Res Part I Oceanogr Res Pap 57:696–707

    Article  CAS  Google Scholar 

  • Gaylord B, Kroeker KJ, Sunday JM, Anderson KM, Barry JP, Brown NE, Connell SD, Dupont S, Fabricius KE, Hall-Spencer JM, Klinger T, Milazzo M, Munday PI, Russell BD, Sanford E, Schreiber SJ, Thiyagarajan V, Vaughan MLH, Widdicombe S, Harley CDG (2015) Ocean acidification through the lens of ecological theory. Ecology 96:3–15

    Article  PubMed  Google Scholar 

  • Gibbons MJ, Griffiths CL (1986) A comparison of macrofaunal and meiofaunal distribution and standing stock across a rocky shore, with an estimate of their productivities. Mar Biol 3:181–188

    Article  Google Scholar 

  • Giere O (2009) Meiobenthology: The microscopic motile fauna of aquatic sediments, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

  • Gobin JF, Warwick RM (2006) Geographical variation in species diversity: A comparison of marine polychaetes and nematodes. J Exp Mar Bio Ecol 330:234–244

    Article  Google Scholar 

  • Gutiérrez JL, Jones CG, Byers JE, Arkema KK, Berkenbusch K, Commito JA, Duarte CM, Hacker SD, Lambrinos JG, Hendriks IE, Hogarth PJ, Palomo MG, Wild C (2011) Physical ecosystem engineers and the functioning of estuaries and coasts. In: Wolanski E, McLusky DS (eds) Treatise on estuarine and coastal science. Waltham: Academic 7:53–81

  • Hale R, Calosi P, McNeill L, Mieszkowska N, Widdicombe S (2011) Predicted levels of future ocean acidification and temperature rise could alter community structure and biodiversity in marine benthic communities. Oikos 120:661–674

    Article  Google Scholar 

  • Hall-Spencer JM, Rodolfo-Metalpa R, Martin S, Ransome E, Fine M, Turner SM, Rowley SJ, Tedesco D, Buia MC (2008) Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454:96–99

    Article  CAS  PubMed  Google Scholar 

  • Hargrave CW, Gary KP, Rosado SK (2009) Potential effects of elevated atmospheric carbon dioxide on benthic autotrophs and consumers in stream ecosystems: a test using experimental stream mesocosms. Glob Chang Biol 15:2779–2790

    Article  Google Scholar 

  • Hendriks IE, Duarte CM (2010) Ocean acidification: Separating evidence from judgment – A reply to Dupont et al. Estuar Coast Shelf Sci 89:186–190

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  PubMed  Google Scholar 

  • Hoey AS, Bellwood DR (2010) Cross-shelf variation in browsing intensity on the Great Barrier Reef. Coral Reefs 29:499–508

    Article  Google Scholar 

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY, USA

  • IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, NY, USA

  • Ishida H, Watanabe Y, Fukuhara T, Kaneko S, Furusawa K, Shirayama Y (2005) In situ enclosure experiment using a benthic chamber system to assess the effect of high concentration of CO2 on deep-sea benthic communities. J Oceanogr 61:835–843

    Article  CAS  Google Scholar 

  • Ishida H, Golmen LG, West J, Krüger M, Coombs P, Berge JA, Fukuhara T, Magi M, Kita J (2013) Effects of CO2 on benthic biota: An in situ benthic chamber experiment in Storfjorden (Norway). Mar Pollut Bull 73:443–451

    Article  CAS  PubMed  Google Scholar 

  • Johnson VR, Brownlee C, Rickaby REM, Graziano M, Milazzo M, Hall-Spencer JM (2013) Responses of marine benthic microalgae to elevated CO2. Mar Biol 160:1813–1824

    Article  CAS  Google Scholar 

  • Jokiel PL, Rodgers KS, Kuffner IB, Andersson AJ, Cox EF, Mackenzie FT (2008) Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27:473–483

    Article  Google Scholar 

  • Kelaher BP (2003) Changes in habitat complexity negatively affect diverse gastropod assemblages in coralline algal turf. Oecologia 135:431–441

    Article  CAS  PubMed  Google Scholar 

  • Kennedy A, Jacoby C (1999) Biological indicators of marine environmental health: meiofauna–a neglected benthic component? Environ Monit Assess 54:47–68

    Article  Google Scholar 

  • Kleypas JA, Yates KK (2009) Coral reefs and ocean acidification. Oceanography 22:108–117

    Article  Google Scholar 

  • Kramer MJ, Bellwood O, Bellwood DR (2012) Cryptofauna of the epilithic algal matrix on an inshore coral reef, Great Barrier Reef. Coral Reefs 31:1007–1015

    Article  Google Scholar 

  • Kramer MJ, Bellwood O, Bellwood DR (2013) The trophic importance of algal turfs for coral reef fishes: the crustacean link. Coral Reefs 32:575–583

    Article  Google Scholar 

  • Kroeker KJ, Micheli F, Gambi MC, Martz TR (2011) Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc Natl Acad Sci USA 108:14515–14520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Kurihara H, Ishimatsu A (2008) Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Pollut Bull 56:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Kurihara H, Shimode S, Shirayama Y (2004) Sub-lethal effects of elevated concentration of CO2 on planktonic copepods and sea urchins. J Oceanogr 60:743–750

    Article  CAS  Google Scholar 

  • Kurihara H, Ishimatsu A, Shirayama Y (2007) Effects of elevated seawater CO2 concentration on the meiofauna. J Mar Sci Technol Special Issue:17–22

  • Leão ZMAN, Dominguez JML (2000) Tropical coast of Brazil. Mar Pollut Bull 41:112–122

    Article  Google Scholar 

  • Li W, Gao K (2012) A marine secondary producer respires and feeds more in a high CO2 ocean. Mar Pollut Bull 64:699–703

    Article  CAS  PubMed  Google Scholar 

  • Lidbury I, Johnson V, Hall-Spencer JM, Munn CB, Cunliffe M (2012) Community-level response of coastal microbial biofilms to ocean acidification in a natural carbon dioxide vent ecosystem. Mar Pollut Bull 64:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Maida M, Ferreira BP (1997) Coral reefs of Brazil: an overview. Proc 8th Int Coral Reef Symp 1:263–274

  • Matias MG, Underwood AJ, Coleman RA (2007) Interactions of components of habitat alter composition and variability of assemblages. J Anim Ecol 76:986–994

    Article  PubMed  Google Scholar 

  • Mayor DJ, Matthews C, Cook K, Zuur AF, Hay S (2007) CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar Ecol Prog Ser 350:91–97

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • Mirto S, Danovaro R (2004) Meiofaunal colonisation on artificial substrates: a tool for biomonitoring the environmental quality on coastal marine systems. Mar Pollut Bull 48:919–926

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Suwa R, Iguchi A, Nakamura M, Shimada K, Sakai K, Suzuki A (2009) Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates. Zygote 18:103–107

    Article  Google Scholar 

  • Pascal PY, Fleeger JW, Galvez F, Carman KR (2010) The toxicological interaction between ocean acidity and metals in coastal meiobenthic copepods. Mar Pollut Bull 60:2201–2208

    Article  CAS  PubMed  Google Scholar 

  • Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60:705–718

    Article  Google Scholar 

  • Porzio L, Buia MC, Hall-Spencer JM (2011) Effects of ocean acidification on macroalgal communities. J Exp Mar Bio Ecol 400:278–287

    Article  CAS  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, p 260

    Google Scholar 

  • Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc—A user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone): U.S. Geological Survey Open-File Report 2010–1280

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  CAS  PubMed  Google Scholar 

  • Rossoll D, Bermúdez R, Hauss H, Schulz KG, Riebesell U, Sommer U, Winder M (2012) Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS One 7:e34737

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology: A functional evolutionary approach, 7th edn. Brooks/Cole, Thomson Learning, Belmont

    Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  PubMed  Google Scholar 

  • Santos HF, Carmo FL, Duarte G, Dini-Andreote F, Castro CB, Rosado AS, Elsas JD, Peixoto RS (2014) Climate change affects key nitrogen-fixing bacterial populations on coral reefs. ISME J 8:2272–2279

    Article  PubMed  Google Scholar 

  • Sarmento VC, Santos PJP (2012) Trampling on coral reefs: tourism effects on harpacticoid copepods. Coral Reefs 31:135–146

    Article  Google Scholar 

  • Snelgrove PVR, Butman CA (1994) Animal–sediment relationships revisited: cause versus effect. Oceanogr Mar Biol 32:111–177

    Google Scholar 

  • Sung CG, Kim TW, Park YG, Kang SG, Inaba K, Shiba K, Choi TS, Moon SD, Litvin S, Lee KT, Lee JS (2014) Species and gamete-specific fertilization success of two sea urchins under near future levels of pCO2. J Mar Syst 137:67–73

    Article  Google Scholar 

  • Takeuchi K, Fujioka Y, Kawasaki Y, Shirayama Y (1997) Impacts of high concentration of CO2 on marine organisms; a modification of CO2 ocean sequestration. Energy Convers Manag 38:337–341

    Article  Google Scholar 

  • Thistle D, Carman KR, Sedlacek L, Brewer PG, Fleeger JW, Barry JP (2005) Deep-ocean, sediment-dwelling animals are sensitive to sequestered carbon dioxide. Mar Ecol Prog Ser 289:1–4

    Article  Google Scholar 

  • Underwood AJ, Chapman MG (1996) Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107:212–224

    Article  Google Scholar 

  • Underwood AJ, Chapman MG (2006) Early development of subtidal macrofaunal assemblages: relationships to period and timing of colonization. J Exp Mar Bio Ecol 330:221–233

    Article  Google Scholar 

  • Uthicke S, Liddy M, Nguyen HD, Byrne M (2014) Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp. A. Coral Reefs 33:831–845

    Article  Google Scholar 

  • van Hooidonk R, Maynard JA, Manzello D, Planes S (2014) Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob Chang Biol 20:103–112

    Article  PubMed  Google Scholar 

  • Webster NS, Negri AP, Flores F, Humphrey C, Soo R, Botté ES, Vogel N, Uthicke S (2013) Near-future ocean acidification causes differences in microbial associations within diverse coral reef taxa. Environ Microbiol Rep 5:243–251

    Article  CAS  PubMed  Google Scholar 

  • White AT, Vogt HP, Arin T (2000) Philippine coral reefs under threat: the economic losses caused by reef destruction. Mar Pollut Bull 40:598–605

    Article  CAS  Google Scholar 

  • Widdicombe S, Dashfield SL, McNeill CL, Needham HR, Beesley A, McEvoy A, Øxnevad S, Clarke KR, Berge JA (2009) Effects of CO2 induced seawater acidification on infaunal diversity and sediment nutrient fluxes. Mar Ecol Prog Ser 379:59–75

    Article  CAS  Google Scholar 

  • Wieser W, Ott J, Schiemer F, Gnaiger E (1974) An ecophysiological study of some meiofauna species inhabiting a sandy beach at Bermuda. Mar Biol 26:235–248

    Article  Google Scholar 

  • Wilkinson CR (1996) Global change and coral reefs: impacts on reefs, economies and human cultures. Glob Chang Biol 2:547–558

    Article  Google Scholar 

  • Wismer S, Hoey AS, Bellwood DR (2009) Cross-shelf benthic community structure on the Great Barrier Reef: relationships between macroalgal cover and herbivore biomass. Mar Ecol Prog Ser 376:45–54

    Article  Google Scholar 

  • Witt V, Wild C, Anthony KRN, Diaz-Pulido G, Uthicke S (2011) Effects of ocean acidification on microbial community composition of, and oxygen fluxes through, biofilms from the Great Barrier Reef. Environ Microbiol 13:2976–2989

    Article  CAS  PubMed  Google Scholar 

  • Wyckmans M, Chepurnov VA, Vanreusel A, De Troch M (2007) Effects of food diversity on diatom selection by harpacticoid copepods. J Exp Mar Bio Ecol 345:119–128

    Article  Google Scholar 

  • Zar JH (1996) Biostatistical Analysis, 3rd edn. Prentice-Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

VC Sarmento gratefully acknowledges a PhD scholarship from the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE), and PJP Santos (CNPq 305417/2011-8) and AM Esteves (CNPq 312143/2013-3) acknowledge research fellowships from the Conselho Nacional de Ciência e Tecnologia (CNPq). We thank Alex M. Silva for help with meiofauna extraction and Dr. Janet W. Reid for English language revision. Special thanks are also due to the ‘Rede de Pesquisas Coral Vivo,’ to Petrobras and to the Arraial d’Ajuda Eco Parque, for all logistical assistance provided. We are grateful to the reviewers for their incisive and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. P. Santos.

Additional information

Communicated by Biology Editor Prof. Brian Helmuth

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarmento, V.C., Souza, T.P., Esteves, A.M. et al. Effects of seawater acidification on a coral reef meiofauna community. Coral Reefs 34, 955–966 (2015). https://doi.org/10.1007/s00338-015-1299-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1299-6

Keywords

Navigation