Skip to main content

Advertisement

Log in

Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Decreases in seawater pH and carbonate saturation state (Ω) following the continuous increase in atmospheric CO2 represent a process termed ocean acidification, which is predicted to become a main threat to marine calcifiers in the near future. Segmented, tropical, marine green macro-algae of the genus Halimeda form a calcareous skeleton that involves biotically initiated and induced calcification processes influenced by cell physiology. As Halimeda is an important habitat provider and major carbonate sediment producer in tropical shallow areas, alterations of these processes due to ocean acidification may cause changes in the skeletal microstructure that have major consequences for the alga and its environment, but related knowledge is scarce. This study used scanning electron microscopy to examine changes of the CaCO3 segment microstructure of Halimeda opuntia specimens that had been exposed to artificially elevated seawater pCO2 of ~650 µatm for 45 d. In spite of elevated seawater pCO2, the calcification of needles, located at the former utricle walls, was not reduced as frequent initiation of new needle-shaped crystals was observed. Abundance of the needles was ~22 % µm−2 higher and needle crystal dimensions ~14 % longer. However, those needles were ~42 % thinner compared with the control treatment. Moreover, lifetime cementation of the segments decreased under elevated seawater pCO2 due to a loss in micro-anhedral carbonate as indicated by significantly thinner calcified rims of central utricles (35–173 % compared with the control treatment). Decreased micro-anhedral carbonate suggests that seawater within the inter-utricular space becomes CaCO3 undersaturated (Ω < 1) during nighttime under conditions of elevated seawater pCO2, thereby favoring CaCO3 dissolution over micro-anhedral carbonate accretion. Less-cemented segments of H. opuntia may impair the environmental success of the alga, its carbonate sediment contribution, and the temporal storage of atmospheric CO2 within Halimeda-derived sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Bertucci A, Moya A, Tambutté S, Allemand D, Supuran CT, Zoccola D (2013) Carbonic anhydrases in anthozoan corals—a review. Bioorg Med Chem 21:1437–1450

    Article  CAS  PubMed  Google Scholar 

  • Bonucci E (2007) Main suggested calcification mechanisms: extracellular matrix. In: Schreck S (ed) Biological calcification: normal and pathological processes in the early stages. Springer, Heidelberg, pp 507–558

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1976) Calcification in the green alga Halimeda IV. The action of metabolic inhibitors on photosynthesis and calcification. J Exp Bot 27:894–907

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  PubMed  Google Scholar 

  • Cornwall CE, Hepburn CD, Pritchard D, Currie KI, McGraw CM, Hunter KA, Hurd CL (2012) Carbon-use strategies in macroalgae: differential responses to lowered pH and implications for ocean acidification. J Phycol 48:137–144

    Article  CAS  Google Scholar 

  • De Beer D, Larkum AWD (2001) Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ 24:1209–1217

    Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Dickson AG, Afghan JD, Anderson GC (2003) Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar Chem 80.2:185–197

  • Dickson AG, Sabine CL, Christopher JR (2007) Guide to best practices for ocean CO2 measurements. North Pacific Marine Science Organization Special Publication 3, Sidney, British Columbia, pp 176

  • Dodge RE, Wyers SC, Frith HR, Knap AH, Smith SR, Cook CB, Sleeter TD (1984) Coral calcification rates by the buoyant weight technique: effects of alizarin staining. J Exp Mar Biol Ecol 75:217–232

    Article  Google Scholar 

  • Doney SC, Balch WM, Fabry VJ, Feely RA (2009) Ocean acidification: a critical emerging problem for the ocean sciences. Oceanography 22:16–25

    Article  Google Scholar 

  • Drew EEA (1983) Halimeda biomass, growth rates and sediment generation on reefs in the central Great Barrier Reef province. Coral Reefs 2:101–110

    Article  Google Scholar 

  • Drew EEA, Abel KM (1988) Studies on Halimeda I. The distribution and species composition of Halimeda meadows throughout the Great Barrier Reef Province. Coral Reefs 6:195–205

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  CAS  PubMed  Google Scholar 

  • Freile D, Milliman J, Hillis L (1995) Leeward bank margin Halimeda meadows and draperies and their sedimentary importance on the western Great Bahama Bank slope. Coral Reefs 14:27–33

    Article  Google Scholar 

  • Guinotte JM, Fabry VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann NY Acad Sci 1134:320–342

    Article  CAS  PubMed  Google Scholar 

  • Hillis L (2001) The calcareous reef alga Halimeda (Chlorophyta, Byropsidales): a cretaceous genus that diversified in the Cenozoic. Palaeogeogr Palaeocl 166:89–100

    Article  Google Scholar 

  • Hillis-Colinvaux L (1980) Ecology and taxonomy of Halimeda: primary producer of coral reefs. Adv Mar Biol 17:1–327

    Article  Google Scholar 

  • Hine AC, Hallock P, Harris MW, Mullins HT, Belknap DF, Jaap WC (1988) Halimeda bioherms along an open seaway: Miskito Channel, Nicaraguan Rise, SW Caribbean Sea. Coral Reefs 6:173–178

    Article  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hofmann LC, Straub S, Bischof K (2012) Competition between calcifying and noncalcifying temperate marine macroalgae under elevated CO2 levels. Mar Ecol Prog Ser 464:89–105

    Article  CAS  Google Scholar 

  • Hofmann LC, Straub S, Bischof K (2013) Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officials. J Exp Bot 64:899–908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hofmann LC, Heiden J, Bischof K, Teichberg M (2014) Nutrient availability affects the response of the calcifying chlorophyte Halimeda opuntia (L.) J.V. Lamouroux to low pH. Planta 239:231–242

    Article  CAS  PubMed  Google Scholar 

  • Johns H, Moore C (1988) Reef to basin sediment transport using Halimeda as a sediment tracer, Grand Cayman Island, West Indies. Coral Reefs 6:187–193

    Article  Google Scholar 

  • Johnson MD, Price NN, Smith JE (2014) Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ 2:e411

    Article  PubMed Central  PubMed  Google Scholar 

  • Jury CP, Whitehead RF, Szmant AM (2010) Effects of variations in carbonate chemistry on the calcification rates of Madracis auretenra (=Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Glob Change Biol 16:1632–1644

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang XH (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob Change Biol 19:103–132

    Article  Google Scholar 

  • Langer G, Geisen M, Baumann KH, Kläs J, Riebesell U, Thoms S, Young JR (2006) Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophy Geosy 7:1–12

    Article  Google Scholar 

  • Macintyre IG, Reid RP (1992) Comment on the origin of aragonite needle mud: a picture is worth a thousand words. J Sediment Res 62:1095–1097

  • Macintyre IG, Reid RP (1995) Crystal alteration in a living calcareous alga (Halimeda): implications for studies in skeletal diagenesis. J Sediment Res A65:143–153

    Google Scholar 

  • Manzello DP, Kleypas JA, Budd DA, Eakin CM, Glynn PW, Langdon C (2008) Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high-CO2 world. P Natl A Sci 105:10450–10455

    Article  CAS  Google Scholar 

  • Merbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochem Cy 7:927–957

    Article  CAS  Google Scholar 

  • Milliman JD (1974) Recent sedimentary carbonates, part 1. Marine carbonates. Springer, Heidelberg

    Book  Google Scholar 

  • Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381

    Article  CAS  PubMed  Google Scholar 

  • Multer HG (1988) Growth rate, ultrastructure and sediment contribution of Halimeda incrassata and Halimeda monile, Nonsuch and Falmouth Bays, Antigua, W.I. Coral Reefs 6:179–186

    Article  Google Scholar 

  • Neumann AC, Land LS (1975) Lime mud deposition and calcareous algae in the Bight of Abaco, Bahamas; a budget. J Sediment Res 45:763–786

    CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Platter GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Paul V, Hay M (1986) Seaweed susceptibility to herbivory: chemical and morphological correlates. Mar Ecol-Prog Ser 33:255–264

    Article  CAS  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) CO2SYS DOS Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, TN

  • Price NN, Hamilton SL, Tootell JS, Smith JE (2011) Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Mar Ecol-Prog Ser 440:67–78

    Article  CAS  Google Scholar 

  • Rees SA, Opdyke BN, Wilson PA, Henstock TJ (2007) Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 26:177–188

    Article  Google Scholar 

  • Reid RP, Macintyre IG (1998) Carbonate recrystallization in shallow marine environments: a widespread diagenetic process forming micritized grains. J Sediment Res 68:928–946

    Article  CAS  Google Scholar 

  • Reyes-Nivia C, Diaz-Pulido G, Dove S (2014) Relative roles of endolithic algae and carbonate chemistry variability in the skeletal dissolution of crustose coralline algae. Biogeosciences Discuss 11:2993–3021

    Article  Google Scholar 

  • Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729

    Article  CAS  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practices for ocean acidification research and data reporting. Luxembourg: Publications Office of the European Union, p 260

  • Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134

    Article  CAS  Google Scholar 

  • Ries JB (2011) Skeletal mineralogy in a high-CO2 world. J Exp Mar Biol Ecol 403:54–64

    Article  CAS  Google Scholar 

  • Robbins LL, Knorr PO, Hallock P (2009) Response of Halimeda to ocean acidification: field and laboratory evidence. Biogeosci Discuss 6:4895

    Article  Google Scholar 

  • Stanley SM (2008) Effects of global seawater chemistry on biomineralization: past, present, and future. Chem Rev 108:4483–4498

    Article  CAS  PubMed  Google Scholar 

  • Stanley SM, Ries JB, Hardie LA (2010) Increased production of calcite and slower growth for the major sediment-producing alga Halimeda as the Mg/Ca ratio of seawater is lowered to a “Calcite Sea” level. J Sediment Res 80:6–16

    Article  CAS  Google Scholar 

  • Sinutok S, Hill R, Doblin MA, Wuhrer R, Ralph PJ (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200–1212

    Article  CAS  Google Scholar 

  • Sinutok S, Hill R, Doblin MA, Kühl M, Ralph PJ (2012) Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31:1201–1213

    Article  Google Scholar 

  • Takahashi T, Broecker WS, Bainbridge AE (1981) The alkalinity and total carbon dioxide concentration in the world oceans. Carbon Cycle Modelling, SCOPE 16:271–286

    CAS  Google Scholar 

  • Verbruggen H, Kooistra W (2004) Morphological characterization of lineages within the calcified tropical seaweed genus Halimeda (Bryopsidales, Chlorophyta). Eur J Phycol 39:213–228

    Article  Google Scholar 

  • Verbruggen H, Tyberghein L, Pauly K, Vlaeminck C, Nieuwenhuyze KV, Kooistra WH, Leliaert F, Clerck OD (2009) Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. Global Ecol Biogeogr 18:393–405

    Article  Google Scholar 

  • Vogel N, Fabricius KE, Strahl J, Noonan SHC, Wild C, Uthicke S (2015a) Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnol Oceanogr 60:263–275

    Article  Google Scholar 

  • Vogel N, Meyer F, Wild C, Uthicke S (2015b) Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar Ecol Prog Ser 521:49–61

    Article  CAS  Google Scholar 

  • Wefer G (1980) Carbonate production by algae Halimeda, Penicillus and Padina. Nature 285:323–324

    Article  CAS  Google Scholar 

  • Weiner S, Lowenstam H (1986) Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. Crit Rev Biochem Mol 20:365–408

    Article  CAS  Google Scholar 

  • Weiss IM, Marin F (2008) The role of enzymes in biomineralization processes. In: Sigel A, Sigel H, Sigel RKO (eds) Biomineralization: From nature to application. Wiley, West Sussex, pp 71–126

    Google Scholar 

  • Wienberg C, Westphal H, Kwoll E, Hebbeln D (2010) An isolated carbonate knoll in the Timor Sea (Sahul Shelf, NW Australia): facies zonation and sediment composition. Facies 56:179–193

    Article  Google Scholar 

  • Wizemann A, Meyer FW, Westphal H (2014) A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux). Coral Reefs 33:951–964

    Article  Google Scholar 

Download references

Acknowledgments

Sebastian Flotow (ZMT—Bremen) is acknowledged for the preparation of thin sections and support with the SEM analyses. Nils Rädecker and Florian Roth (ZMT—Bremen, University of Bremen) provided help in the setup of mesocosms, sample collection and water parameter measurements. Achim Meyer (ZMT—Bremen) helped to maintain the mesocosms and the gas-mixing system during the experiment. This research was funded by the Leibniz Center for Tropical Marine Ecology. Contribution of L.C. Hofmann was funded by the German Federal Ministry of Education and Research (BMBF) project Biological Impacts of Ocean Acidification (BIOACID). Helpful comments and suggestions from reviewers and the associate editor highly improved the manuscript.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Wizemann.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wizemann, A., Meyer, F.W., Hofmann, L.C. et al. Ocean acidification alters the calcareous microstructure of the green macro-alga Halimeda opuntia . Coral Reefs 34, 941–954 (2015). https://doi.org/10.1007/s00338-015-1288-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-015-1288-9

Keywords

Navigation