Skip to main content

Advertisement

Log in

Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral bleaching poses a threat to coral reefs worldwide. As a consequence of the temperature-induced breakdown in coral–dinoflagellate symbiosis, bleaching can have extensive effects on reef communities. However, our understanding of bleaching at a cellular level is limited, and this is particularly true regarding differential susceptibility among coral species. Recent work suggests that bleaching may represent a host innate immune-like response to symbiont dysfunction that involves synthesis of the signalling compound nitric oxide (NO) and the induction of host apoptotic-like cell death. In this study, we examined the activity of apoptosis-regulating enzymes alongside oxidised NO accumulation (a proxy for NO synthesis) in the reef corals Acropora millepora, Montipora digitata, and Pocillopora damicornis during experimental thermal stress. P. damicornis was the most sensitive species, suffering mortality (tissue sloughing) after 5 days at 33 °C but non-lethal bleaching after 9 days at 31.5 °C. A. millepora bleached at 33 °C but remained structurally intact, while M. digitata showed little evidence of bleaching. P. damicornis and A. millepora both exhibited evidence of temperature-induced NO synthesis and, after 5 days of heating, levels of oxidised NO in both species were fivefold higher than in controls maintained at 28.5 °C. These responses preceded bleaching by a number of days and may have occurred before symbiont dysfunction (measured as chlorophyll a degradation and oxidised NO accumulation). In A. millepora, apparent NO synthesis correlated with the induction of host apoptotic-like pathways, while in P. damicornis, the upregulation of apoptotic pathways occurred later. No evidence of elevated NO production or apoptosis was observed in M. digitata at 33 °C and baseline activity of apoptosis-regulating enzymes was negligible in this species. These findings provide important physiological data in the context of the responses of corals to global change and suggest that early events in the host may be important in the collapse of the coral–dinoflagellate symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2008) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20

    Article  PubMed  Google Scholar 

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annual Review of Ecology, Evolution and Systematics 40:551–571

    Google Scholar 

  • Baker AC (2001) Ecosystems—Reef corals bleach to survive change. Nature 411:765–766

    Article  CAS  PubMed  Google Scholar 

  • Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: A ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312

    Google Scholar 

  • Bouchard JN, Yamasaki H (2008) Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: A possible linkage between nitric oxide and the coral bleaching bleaching phenomenon. Plant Cell Physiol 49:641–652

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye-binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med 43:645–657

    Google Scholar 

  • Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism: a testable hypothesis. Bioscience 43:320–326

    Article  Google Scholar 

  • Carmen JC, Sinai AP (2007) Suicide prevention: Disruption of apoptotic pathways by protozoan parasites. Mol Microbiol 64:904–916

    Article  CAS  PubMed  Google Scholar 

  • Cumbo VR, Baird AH, van Oppen MJH (2013) The promiscuous larvae: flexibility in the establishment of symbiosis in corals. Coral Reefs 32:111–120

    Google Scholar 

  • Detournay O, Weis VM (2011) Role of the sphingosine rheostat in the regulation of cnidarian-dinoflagellate symbioses. Biol Bull 221:261–269

    CAS  PubMed  Google Scholar 

  • Detournay O, Schnitzler CE, Poole A, Weis VM (2012) Regulation of cnidarian-dinoflagellate mutualisms: Evidence that activation of a host TGFbeta innate immune pathway promotes tolerance of the symbiont. Dev Comp Immunol 38:525–537

    Google Scholar 

  • Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543

    Article  CAS  PubMed  Google Scholar 

  • Dunn SR, Weis VM (2009) Apoptosis as a post-phagocytic winnowing mechanism in a coral-dinoflagellate mutualism. Environ Microbiol 11:268–276

    Google Scholar 

  • Dunn SR, Thomason JC, Le Tissier MDA, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Dunn SR, Pernice M, Green K, Hoegh-Guldberg O, Dove SG (2012) Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: Are the batteries of the reef going to run out? PLoS ONE 7:e39024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: Concepts and controversies. Nature Rev Microbiol 2:820–832

    Google Scholar 

  • Fisher PL, Malme MK, Dove S (2012) The effect of temperature stress on coral-Symbiodinium associations containing distinct symbiont types. Coral Reefs 31:473–485

    Google Scholar 

  • Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, Woesik Rv, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: The host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110

  • Franklin EC, Stat M, Pochon X, Putnam HM, Gates RD (2012) GeoSymbio: A hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium-host symbioses. Mol Ecol Resour 12:369–373

    Google Scholar 

  • Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: Implications for coral bleaching. Biol Bull 182:324–332

    Article  Google Scholar 

  • Gates RD, Hoegh-Guldberg O, McFall-Ngai MJ, Bil KY, Muscatine L (1995) Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Natl Acad Sci USA 92:7430–7434

    Google Scholar 

  • Goreau TF, MacFarlane AH (1990) Reduced growth in Montastrea annularis during the 1997-1998 coral bleaching event. Coral Reefs 8:211–215

    Article  Google Scholar 

  • Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PLoS ONE 7:e33353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkins TD, Davy SK (2012) Nitric oxide production and tolerance differ among Symbiodinium types exposed to heat stress. Plant Cell Physiol 53:1889–1898

    Google Scholar 

  • Hawkins TD, Bradley BJ, Davy SK (2013) Nitric oxide mediates coral bleaching through an apoptotic-like cell death pathway: evidence from a model cnidarian-dinoflagellate symbiosis. FASEB J In Press [10.1096/fj.13-235051]

  • Hill R, Ralph PJ (2007) Post-bleaching viability of expelled zooxanthellae from the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 352:137–144

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Jimenez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M (2009) Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J Exp Bot 60:815–828

    Google Scholar 

  • Jones RJ (2008) Coral bleaching, bleaching-induced mortality, and the adaptive significance of the bleaching response. Mar Biol 154:65–80

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Kerr JFR, Whyllie AH, Currie AR (1972) Apoptosis: A basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Google Scholar 

  • Lasi M, Pauly B, Schmidt N, Cikala M, Stiening B, Kasbauer T, Zenner G, Popp T, Wagner A, Knapp RT, Huber AH, Grunert M, Soding J, David CN, Bottger A (2010) The molecular cell death machinery in the simply cnidarian Hydra includes an expanded caspase family and pro- and anti-apoptotic Bcl-2 proteins. Cell Res 1:1–14

    Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments. Annu Rev Physiol 68:253–278

    Google Scholar 

  • Logan DDK, LaFlamme AC, Weis VM, Davy SK (2010) Flow-cytometric characterization of the cell-surface glycans of symbiotic dinoflagellates (Symbiodinium spp.). J Phycol 46:525–533

    Google Scholar 

  • McGinty ES, Pieczonka J, Mydlarz LD (2012) Variations in reactive oxygen release and antioxidant activity in multiple Symbiodinium types in response to elevated temperature. Microb Ecol 64:1000–1007

    Google Scholar 

  • Miranda KM, Espey MG, Wink DA (2001) A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5:62–71

    Article  CAS  PubMed  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  • Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213:934–945

    Google Scholar 

  • Nii CM, Muscatine L (1997) Oxidative stress in the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943): Contribution of the animal to superoxide ion production at elevated temperature. Biol Bull 192:444–456

    Article  CAS  Google Scholar 

  • Nussler AK, Glanemann M, Schirmeier A, Liu L, Nuessler NC (2006) Fluorometric measurement of nitrite/nitrate by 2,3-diaminonaphthalene. Nature Protocols 1:2223–2226

    Google Scholar 

  • Palmer CV, Bythell JC, Willis BL (2010) Levels of immunity parameters underpin bleaching and disease susceptibility of reef corals. FASEB J 24:1935–1946

    Google Scholar 

  • Paxton CW, Davy SK, Weis VM (2013) Stress and death of host cells play a role in cnidarian bleaching. J Exp Biol 216:2813–2820

    Google Scholar 

  • Perez SF (2007) Exploring the cellular mechanisms of cnidarian bleaching in the sea anemone Aiptasia pallida. PhD Thesis, Oregon State University

  • Perez S, Weis VM (2006) Nitric oxide and cnidarian bleaching: An eviction notice mediates breakdown of a symbiosis. J Exp Biol 209:2804–2810

    Article  CAS  PubMed  Google Scholar 

  • Pernice M, Dunn SR, Miard T, Dufour S, Dove S, Hoegh-Guldberg O (2011) Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora. PLoS ONE 6:e16095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta-Bioenergetics 975:384–394

    Article  CAS  Google Scholar 

  • Pratchett MS, Wilson SK, Graham NA, Munday PL, Jones GP, Polunin NVC (2009) Coral bleaching and consequences for motile reef organisms: Past, present and uncertain future effects. In: van Oppen MJ, Lough JM (eds) Coral bleaching: Patterns, processes, causes and consequences. Springer-Verlag, Heidelberg, Germany, pp 139–152

    Chapter  Google Scholar 

  • Puill-Stephan E, Seneca FO, Miller DJ, van Oppen MJH, Willis BL (2012) Expression of putative immune response genes during early ontogeny in the coral Acropora millepora. PLoS ONE 7:e39099

  • Putnam HM, Stat M, Pochon X, Gates RD (2012) Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals. Proc R Soc B 279:4352–4361

    Google Scholar 

  • Ralph PJ, Gademann R, Larkum AWD (2001) Zooxanthellae expelled from bleached corals at 33oC are photosynthetically competent. Mar Ecol Prog Ser 220

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  CAS  PubMed  Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Nat Acad Sci USA 105:10444–10449

    Google Scholar 

  • Saragosti E, Tchernov D, Katsir A, Shaked Y (2010) Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS ONE 5:e12508

    Article  PubMed Central  PubMed  Google Scholar 

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linneaus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Suggett DJ, Warner ME, Smith DJ, Davey P, Hennige S, Baker NR (2008) Photosynthesis and production of hydrogen peroxide by Symbiodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J Phycol 44:948–956

    Google Scholar 

  • Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H, Falkowski PG (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Nat Acad Sci USA 108:9905–9909

    Google Scholar 

  • Tolleter D, Seneca François O, DeNofrio Jan C, Krediet Cory J, Palumbi Stephen R, Pringle John R, Grossman Arthur R (2013) Coral bleaching independent of photosynthetic activity. Curr Biol 23:1782–1786

  • Trapido-Rosenthal HG, Sharp KH, Galloway TS, Morrall CE (2001) Nitric oxide and cnidarian-dinoflagellate symbioses: Pieces of a puzzle. Am Zool 41:247–257

    Article  CAS  Google Scholar 

  • van Hooidonk R, Maynard JA, Planes S (2013) Temporary refugia for coral reefs in a warming world. Nature Climate Change 3:508–511

    Google Scholar 

  • Vidal-Dupiol J, Adjeroud M, Roger E, Foure L, Duval D, Mone Y, Ferrier-Pages C, Tambutte E, Tambutte S, Zoccola D, Allemand D, Mitta G (2009) Coral bleaching under thermal stress: Putative involvement of host/symbiont recognition mechanisms. BMC Physiol 9:14

    Google Scholar 

  • Wang YL, Ruby EG (2011) The roles of NO in microbial symbioses. Cell Microbiol 13:518–526

    Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    Article  CAS  PubMed  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of cnidarian bleaching: Stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  CAS  PubMed  Google Scholar 

  • Weis VM (2010) The susceptibility and resilience of corals to thermal stress: Adaptation, acclimatization or both? Mol Ecol 19:1515–1517

    Google Scholar 

  • Wiens M, Krasko A, Perovic S, Muller WEG (2003) Caspase-mediated apoptosis in sponges: Cloning and function of the phylogenetic oldest apoptotic proteases from metazoa. Biochim Biophys Acta-Mol Cell Res 1593:179–189

    Google Scholar 

  • Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 25:434–456

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the staff at Heron Island Research Station, University of Queensland. We also thank Dr. Olga Pantos for assistance with storage and transportation of coral samples, and the Davy Lab and two anonymous reviewers for commenting on the manuscript. This work was supported by a Marsden Fund grant (contract number VUW0902) awarded to SKD and PLF, and JL Stewart and Faculty of Science Strategic Research Grants awarded to TDH. This work fulfils part of the requirements for a PhD funded by a Commonwealth Scholarship awarded to TDH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Davy.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, T.D., Krueger, T., Becker, S. et al. Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals. Coral Reefs 33, 141–153 (2014). https://doi.org/10.1007/s00338-013-1103-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-013-1103-4

Keywords

Navigation