Skip to main content
Log in

Effect of salinity on the skeletal chemistry of cultured scleractinian zooxanthellate corals: Cd/Ca ratio as a potential proxy for salinity reconstruction

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The effect of salinity on the elemental and isotopic skeletal composition of modern zooxanthellate scleractinian corals (Acropora sp., Montipora verrucosa and Stylophora pistillata) was investigated in order to evaluate potential salinity proxies. Corals were cultured in the laboratory at three salinities (36, 38 and 40). The other environmental parameters were kept constant. For all species analyzed, Sr/Ca, Mg/Ca, U/Ca and Li/Ca ratios were not influenced by salinity changes. The Ba/Ca ratio also lacks a systematic relationship with salinity and exhibits high inter-generic variations, up to one order of magnitude. On the contrary, the Cd/Ca ratio decreases as a function of increasing salinity, and δ18O and δ13C also presented a significant response, but with opposite trends to salinity variations. Since Cd/Ca is usually considered as an upwelling proxy, its salinity dependence could compromise the upwelling signal, unless some corrections can be carried out. Regardless, if the dependence found in the present dataset proved to be widespread and systematic, the Cd/Ca ratio could represent a promising salinometer awaiting further investigation. This study also confirmed the reliability of the well-established temperature proxies Sr/Ca, Mg/Ca and U/Ca, as these ratios were insensitive to salinity variations. Moreover, our results showed that δ18O or δ13C can be considered as reliable temperature recorders as far as the salinity effect is removed from the parameter reconstructed (e.g., temperature). Investigating the influence of salinity on the skeletal chemistry of scleractinian corals grown under controlled environmental conditions confirmed previous results, validated isotopic corrections, and identified a promising proxy of salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adam J, Green T (2011) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 2. Tasmanian Cainozoic basalts and the origins of intraplate basaltic magmas. Contrib Mineral Petrol 161:883–899

    Article  CAS  Google Scholar 

  • Adkins JF, Boyle EA, Curry WB, Lutringer A (2003) Stable isotopes in deep-sea corals and a mew mechanism for vital effects. Geochim Cosmochim Acta 67(6):1129–1143

    Article  CAS  Google Scholar 

  • Alibert C, McCulloch MT (1997) Strontium/calcium ratios in modern Porites corals from the Great Barrier Reef as a proxy for sea surface temperature: calibration of the thermometer and monitoring of ENSO. Paleoceanography 12:345–363

    Article  Google Scholar 

  • Alibert C, Kinsley L, Fallon SJ, McCulloch MT, Berkelmans R, McAllister F (2003) Source of trace element variability in Great Barrier Reef corals affected by the Burdekin flood plumes. Geochim Cosmochim Acta 67:231–246

    Article  CAS  Google Scholar 

  • Allison N (1996) Comparative determination of trace and minor elements in coral aragonite by ion microprobe analysis, with preliminary results from Phuket, southern Thailand. Geochim Cosmochim Acta 60:3457–3470

    Article  CAS  Google Scholar 

  • Allison N, Tudhope AW (1992) Nature and significance of geochemical variations in coral skeletons as determined by ion microprobe analysis. Proceedings of the 7th International Coral Reef Symposium, Guam, Vol.1, 173-178

  • Asami R, Yamada T, Iryu Y, Meyer CP, Quinn T, Paulay G (2004) Carbon and oxygen isotopic composition of a Guam coral and their relationships to environmental variables in the western Pacific. Palaeogeogr Palaeoclimatol Palaeoecol 212:1–22

    Article  Google Scholar 

  • Beck JW, Edwards RL, Ito E, Taylor FW, Recy J, Rougerie F, Joannot P, Henin C (1992) Sea-surface temperature from coral skeletal strontium/calcium ratios. Science 257:644–647

    Article  CAS  PubMed  Google Scholar 

  • Bouman C, Elliott T, Vroon PZ (2004) Lithium inputs to subduction zones. Chem Geol 212:59–79

    Article  CAS  Google Scholar 

  • Cahyarini SY, Pfeiffer M, Timm O, Dullo WC, Schönberg DG (2008) Reconstructing seawater δ18O from paired coral δ18O and Sr/Ca ratios: Methods, error analysis and problem, with examples from Tahiti (French Polynesia) and Timor (Indonesia). Geochim Cosmochim Acta 72:2841–2853

    Article  CAS  Google Scholar 

  • Cardinal D, Hamelin B, Bard E, Pätzold J (2001) Sr/Ca, U/Ca and δ18O records in recent massive corals from Bermuda: relationships with sea surface temperature. Chem Geol 176:231–233

    Article  Google Scholar 

  • Carriquiry JD, Villaescusa JA (2010) Coral Cd/Ca and Mn/Ca records of El Niño variability in the Gulf of California. Climate of the Past Discussion 6:63–85

    Article  Google Scholar 

  • Case DH, Robinson LF, Auro ME, Gagnon AC (2010) Environmental and biological controls on Mg and Li in deep-sea scleractinian corals. Earth Planet Sci Lett 300:215–225

    Article  CAS  Google Scholar 

  • Chen T, Yu K, Li S, Chen T, Shi Q (2011) Anomalous Ba/Ca signals associated with low temperature stresses in Porites corals from Daya Bay, northern South China Sea. J Environ Sci (China) 23:1452–1459

    Article  CAS  Google Scholar 

  • Cohen AL, Hart SR (2004) Deglacial sea surface temperatures of the western tropical Pacific: A new look at old coral. Paleoceanography 19:PA4031

    Article  Google Scholar 

  • Cohen AL, Layne GD, Hart SR, Lobel PS (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: Implications for the paleotemperature proxy. Paleoceanography 16:20–22

    Article  Google Scholar 

  • Corrège T (2006) Sea surface temperature and salinity reconstruction from coral geochemical tracers. Paleogeogr Paleoclim Paleoecol 232:408–428

    Article  Google Scholar 

  • Corrège T, Gagan MK, Beck JW, Burr GS, Cabioch G, Le Cornec F (2004) Interdecadal variation in the extent of South Pacific tropical waters during the Younger Drys event. Nature 428:927–929

    Article  PubMed  Google Scholar 

  • Cotta AJB, Enzweiler J (2012) Classical and new procedures of whole rock dissolution for trace element determination by ICP-MS. Geostand Geoanal Res 36:27–50

    Article  CAS  Google Scholar 

  • De Villiers S, Nelson BK, Chivas AR (1995) Biological controls on coral Sr/Ca and δ18O reconstructions of sea surface temperature. Science 269:1247–1249

    Article  PubMed  Google Scholar 

  • Delaney ML, Linn LJ, Druffel ERM (1993) Seasonal cycles of manganese and cadmium in coral from the Galapagos Islands. Geochim Cosmochim Acta 57:347–354

    Article  CAS  Google Scholar 

  • DeLong KL, Quinn TM, Taylor FW (2007) Reconstructing twentieth-century sea surface temperature variability in the southwest Pacific: a replication study using multiple coral Sr/Ca records from New Caledonia. Paleoceanography 22:PA421

    Article  Google Scholar 

  • DeLong KL, Flannery JA, Maupin CR, Poore RZ, Quinn TM (2011) A coral Sr/Ca calibration and replication study of two massive corals from the Gulf of Mexico. Paleogeogr Paleoclim Paleoecol 307:117–128

    Article  Google Scholar 

  • Downs CA, Kramarsky-Winter E, Woodley CM, Downs A, Winters G, Loya Y, Ostrander GK (2009) Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata. Sci Total Environ 407:4838–4851

    Article  CAS  PubMed  Google Scholar 

  • Druffel ERM (1997) Geochemistry of corals: proxies of past ocean chemistry, ocean circulation, and climate. Proc Nat Acad Sci USA 94:8354–8361

    Article  CAS  PubMed  Google Scholar 

  • Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM, Handler MR (1997) A simple method for the precise determination of ≥40 trace elements in geological samples by ICPMS using enriched isotope internal standardization. Chem Geol 134:311–326

    Article  CAS  Google Scholar 

  • Enmar R, Stein M, Bar-Matthews M, Sass E, Katz A, Lazar B (2000) Diagenesis in live corals from the Gulf of Aquaba. I. The effect on paleo-oceanography tracers. Geochim Cosmochim Acta 64:3123–3132

    Article  CAS  Google Scholar 

  • Fairbanks RG, Dodge RE (1979) Annual periodicity of the 18O/16O and 13C/12C ratios in the coral Montastrea annularis. Geochim Cosmochim Acta 43:1009–1020

    Article  CAS  Google Scholar 

  • Fallon SJ, McCulloch MT, van Woesik R, Sinclair DJ (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172:221–238

    Article  CAS  Google Scholar 

  • Fallon SJ, McCulloch MT, Alibert C (2003) Examining water temperature proxies in Porites corals from the Great Barrier Reef: a cross-shelf comparison. Coral Reefs 22:389–404

    Article  Google Scholar 

  • Felis T, Pätzold J (2003) Climate records from corals. In: Wefer G, Lamy F, Mantoura F (eds) Marine Science Frontiers for Europe. Springer: Berlin, pp 11–27

    Chapter  Google Scholar 

  • Felis T, Suzuki A, Kuhnert H, Dima M, Lohmann G, Kawahata H (2009) Subtropical coral reveals abrupt early-twentieth-century freshening in the western North Pacific Ocean. Geology 37:527–530

    Article  CAS  Google Scholar 

  • Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappel J, McCulloch MT, Head MJ (1998) Temperature and surface ocean water balance of mid-Holocene tropical western Pacific. Science 279:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Gagan MK, Ayliffe LK, Beck JW, Cole JE, Druffel ERM, Dunbar RB, Schrag DP (2000) New views of tropical paleoclimates from corals. Quat Sci Rev 19:45–64

    Article  Google Scholar 

  • Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M (2009) Geochemistry of a long in situ section of intrusive slow-spread oceanic lithosphere: Results from IODP Site U1309 (Atlantis Massif, 30 degrees N Mid-Atlantic-Ridge). Earth Planet Sci Lett 279:110–122

    Article  CAS  Google Scholar 

  • Govindaraju K (1994) Complication of working values and simple description for 383 geostandards, Geostandards Newsletter, 18 (1)

  • Hanano D, Weis D, Scoates JS, Aciego S, DePaolo DJ (2010) Horizontal and vertical zoning of heterogeneities in the Hawaiian mantle plume from the geochemistry of consecutive postshield volcano pairs: Kohala-Mahukona and Mauna Kea-Hualalai. Geochemistry Geophysics Geosystems, 11

  • He YH, Zhao GC, Sun M, Han YG (2010) Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: Constraints from bulk-rock geochemistry and Sr-Nd isotopic composition. Lithos 114:186–199

    Article  CAS  Google Scholar 

  • Henderson GM (2002) New oceanic proxies for paleoclimate. Earth Planet Sci Lett 203:1–13

    Article  CAS  Google Scholar 

  • Hendy EJ, Gagan MK, Alibert CA, McCulloch MT, Lough JM, Isdale PJ (2002) Abrupt decrease in tropical Pacific sea surface salinity at end of Little Ice Age. Science 295:1511–1514

    Article  CAS  PubMed  Google Scholar 

  • Hergt J, Woodhead J, Schofield A (2007) A-type magmatism in the Western Lachlan fold belt? A study of granites and rhyolites from the Grampians region, Western Victoria. Lithos 97:122–139

    Article  CAS  Google Scholar 

  • Hu ZC, Gao S (2008) Upper crustal abundances of trace elements: A revision and update. Chem Geol 253:205–221

    Article  CAS  Google Scholar 

  • Imai N, Terashima S, Itoh S, Ando A (1995) Compilation of analytical data for minor and trace-elements in 17 GSJ Geochemical reference samples, igneous rock series. Geostandards Newsletter 19:135–213

    Article  CAS  Google Scholar 

  • Inoue M, Suzuki A, Nohara M, Hibino K, Kawahata H (2007) Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperature. Geophys Res Lett 34:L12611

    Article  Google Scholar 

  • Juillet-Leclerc A, Reynaud S (2010) Light effects on the isotopic fractionation of skeletal oxygen and carbon in the cultured zooxanthellate coral, Acropora: implications for coral-growth rates. Biogeosciences 7:893–906

    Article  Google Scholar 

  • Kamber BS (2009) Geochemical fingerprinting: 40 years of analytical development and real world applications. Appl Geochem 24:1074–1086

    Article  CAS  Google Scholar 

  • Kilbourne KH, Quinn TM, Taylor FW, Delcroix T, Gouriou Y (2004) El Niño-Southern oscillation-related salinity variations recorded in the skeletal geochemistry of a Porites coral from Espiritu Santo, Vanuatu. Paleoceanography 19:PA4002

    Google Scholar 

  • Kim ST, Mucci A, Taylor BE (2007) Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75° C: Revisited. Chem Geol 246:135–146

    Article  CAS  Google Scholar 

  • Le Bec N, Juillet-Leclerc A, Corrège T, Blamart D, Delcroix T (2000) A coral δ18O record of ENSO driven sea surface salinity variability in Fiji (south-western tropical Pacific). Geophy Res Lett 27:3897–3900

    Article  Google Scholar 

  • Lea DW, Shen GT, Boyle EA (1989) Coralline barium records temporal variability in Equatorial Pacific upwelling. Nature 340:373–376

    Article  CAS  Google Scholar 

  • Lough JM (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Paleogeogr Paleoclim Paleoecol 204:115–143

    Article  Google Scholar 

  • Maier C, Felis T, Pätzold J, Bak RPM (2004) Effect of skeletal growth and lack of species effects in the skeletal oxygen isotope climate signal within the coral genus Porites. Mar Geol 207:193–208

    Article  CAS  Google Scholar 

  • Makishima A, Kitagawa H, Nakamura E (2011) Simultaneous Determination of Cd, In, Tl and Bi by Isotope Dilution-Internal Standardization ICP-QMS with Corrections Using Externally Measured MoO+/Mo+ Ratios. Geostand Geoanal Res 35:57–67

    Article  CAS  Google Scholar 

  • Marriott CS, Henderson GM, Crompton R, Staubwasser M, Shaw S (2004a) Effect of mineralogy, salinity and temperature on Li/Ca and Li isotope composition of calcium carbonates. Chem Geol 212:5–15

    Article  CAS  Google Scholar 

  • Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004b) Temperature dependance of δ7Li, δ44Ca and Li/Ca during growth of calcium carbonate. Earth Planet. Sci Lett 222:615–624

    Article  CAS  Google Scholar 

  • Marshall JF, McCulloch MT (2001) Evidence of El Niño and the Indian Ocean Dipole from Sr/Ca derived SSTs for modern corals at Christmas Island, eastern Indian Ocean. Geophys Res Lett 28:3453–3456

    Article  CAS  Google Scholar 

  • Marshall JF, McCulloch MT (2002) An assessment of the Sr/Ca ratio in shallow water hermatypic corals as a proxy for sea surface temperature. Geochim Cosmochim Acta 66:3263–3280

    Article  CAS  Google Scholar 

  • Matthews KA, McDonough WF, Grottoli AG (2006) Cadmium measurements in coral skeleton using isotope dilution-inductively coupled plasma-mass spectrometry. Geochemistry Geophysics Geosystems 7

  • Matthews KA, Grottoli AG, McDonough WF, Palardy JE (2008) Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca). Geochim Cosmochim Acta 72:537–4550

    Google Scholar 

  • McConnaughey TA (1989) Oxygen and carbon isotope disequilibria in biological carbonates: I. Patterns. Geochim Cosmochim Acta 53:151–162

    Article  CAS  Google Scholar 

  • McCulloch MT, Gagan MK, Mortimer GE, Chivas AR, Isdale PJ (1994) A high resolution Sr/Ca and δ18O coral record from the Great Barrier Reef, Australia and the 1982–1983 El Nino. Geochim Cosmochim Acta 58:2747–2754

    Article  CAS  Google Scholar 

  • McCulloch MT, Mortimer GE, Esat T, Xianhua L, Pillans B, Chappell J (1996) High resolution windows into early Holocene climate: Sr/Ca coral records from the Huon Peninsula. Earth Planet Sci Lett 138:169–178

    Article  CAS  Google Scholar 

  • Meibom A, Cuif J-P, Hillion F, Constantz BR, Juillet-Leclerc A, Dauphin Y, Watanabe T, Dunbar RB (2004) Distribution of magnesium in coral skeleton. Geophys. Res. Lett 31:L23306

    Article  Google Scholar 

  • Min GR, Edwards RL, Taylor FW, Recy J, Gallup CD, Beck JW (1995) Annual cycles of U/Ca in coral skeletons and U/Ca thermometry. Geochim Cosmochim Acta 59:2025–2042

    Article  CAS  Google Scholar 

  • Mitsuguchi T, Matsumoto E, Abe O, Uchida T, Isdale PJ (1996) Mg/Ca thermometry in coral skeletons. Science 274:961–963

    Article  CAS  PubMed  Google Scholar 

  • Montaggioni LF, Le Cornec F, Corrège T, Cabioch G (2006) Coral barium/calcium record of mid-Holocene upwelling activity in New Caledonia, South-West Pacific. Paleogeogr Paleoclim Paleoecol 237:436–455

    Article  Google Scholar 

  • Moune S, Gauthier PJ, Gislason SR, Sigmarsson G (2006) Trace element degassing and enrichment in the eruptive plume of the 2000 eruption of Hekla volcano, Iceland. Geochim Cosmochim Acta 70:461–479

    Article  CAS  Google Scholar 

  • Muthiga NA, Szmant AM (1987) The effects of salinity stress on the rate of aerobic respiration and photosynthesis in the hermatypic coral Siderastrea siderea. Biol Bull 173:539–551

    Article  Google Scholar 

  • Norman MD, Duncan RA, Huard JJ (2010) Imbrium provenance for the Apollo 16 Descartes terrain: Argon ages and geochemistry of lunar breccias 67016 and 67455. Geochim Cosmochim Acta 74:763–783

    Article  CAS  Google Scholar 

  • Pilson M.E.Q. (1998) An Introduction to the Chemistry of the Sea. Prentice-Hall, Inc. Upper Saddle River N.J. 431p

  • Pretet C, Samankassou E, Felis T, Reynaud S, Böhm F, Eisenhauer A, Ferrier-Pagès C, Gattuso J-P, Camoin G (2013) Constraining calcium isotope fractionation (δ44/40Ca) in modern and fossil scleractinian coral skeleton. Chem Geol 340:49–58

    Article  CAS  Google Scholar 

  • Quinn TM, Sampson DE (2002) A multiproxy approach to reconstructing sea surface conditions using coral skeleton geochemistry. Paleoceanography 17:1062. doi:10.1029/2000PA000528

    Article  Google Scholar 

  • Ren L, Linsley BK, Wellington GM, Schrag DP, Hugh-Guldberg O (2002) Deconvolving the δ18O seawater component from subseasonal coral δ18O and Sr/Ca at Rarotonga in the southwestern subtropical Pacific for the period 1726 to 1997. Geochim Cosmochim Acta 67:1609–1621

    Article  Google Scholar 

  • Reuer MK, Boyle EA, Cole JE (2003) A mid-twentieth century reduction in tropical upwelling inferred from coralline trace element proxies. Earth Planet Sci Lett 210:437–452

    Article  CAS  Google Scholar 

  • Reynaud S, Ferrier-Pagès C, Meibom A, Mostefaoui S, Mortlock R, Fairbanks R, Allemand D (2007) Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian corals Acropora sp. Geochim Cosmochim Acta 71:354–362

    Article  CAS  Google Scholar 

  • Reynaud-Vaganay S (2000) Contrôle environnemental de la physiologie et de la composition isotopique du squelette des Scléractiniaires à zooxanthelles: approche expérimentale. Thèse de Doctorat, Université de Nice-Sophia Antipolis, 215 p

  • Reynaud-Vaganay S, Juillet-Leclerc A, Jaubert J, Gattuso JP (2001) Effect of light on skeletal δ13C and δ18O, and interaction with photosynthesis, respiration and calcification in two zooxanthellate scleractinian corals. Palaeogeo Palaeoclim Palaeoeco 175:393–404

    Article  Google Scholar 

  • Reynaud-Vaganay S, Gattuso JP, Cuif JP, Jaubert J, Juillet-Leclerc A (1999) A novel culture technique for scleractinian corals: application to investigate changes in skeletal δ18O as a function of temperature. Mar Ecol Progr Ser 180:121–130

    Article  CAS  Google Scholar 

  • Rollion-Bard C, Vigier N, Meibom A, Blamart D, Reynaud S, Rodolfo-Metalpa R, Martin S, Gattuso JP (2009) Effect of environmental conditions and skeletal ultrastructure on the Li isotopic composition of scleractinian corals. Earth Planet Sci Lett 286:63–70

    Article  CAS  Google Scholar 

  • Rosenbaum J, Sheppard SM (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochim Cosmochim Acta 50:1147–1150

    Article  CAS  Google Scholar 

  • Sands DG, Rosman KJR (1997) Cd, Gd and Sm concentrations in BCR-1, BHVO-1, BIR-1, DNC-1, MAG-1, PCC-1 and W-2 by isotope dilution thermal ionization mass spectrometry. Geostandards Newsletter 21:77–83

    Article  CAS  Google Scholar 

  • Shen GT, Dunbar RB (1995) Environmental controls on uranium in reef corals. Geochim Cosmochim Acta 59:2009–2024

    Article  CAS  Google Scholar 

  • Sinclair DJ, McCulloch MT (2004) Corals record low mobile barium concentrations in the Burdekin River during the 1974 flood: evidence for limited Ba supply to rivers? Palaeogeogr Palaeoclim Palaeoecol 214:155–174

    Article  Google Scholar 

  • Sinclair DJ, Williams B, Risk M (2006) A biological origin for climate signals in corals—Trace element “vital effects” are ubiquitous in Scleractinian coral skeletons. Geophys Res Lett 33:L17707

    Article  Google Scholar 

  • Smith SV, Buddemeier RW, Redalje RC, Houck JE (1979) Strontium–calcium thermometry in coral skeletons. Science 204:404–406

    Article  CAS  PubMed  Google Scholar 

  • Swart PK (1983) Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci Rev 19:51–80

    Article  CAS  Google Scholar 

  • van der Straaten F, Schenk V, John T, Gao J (2008) Blueschist-facies rehydration of eclogites (Tian Shan, NW-China): Implications for fluid–rock interaction in the subduction channel. Chem Geol 255:195–219

    Article  Google Scholar 

  • van Geen A, Husby DM (1996) Cadmium in the California Current system: Tracer of past and present upwelling. J Geophys Res 101:3489–3507

    Article  Google Scholar 

  • van Geen A, Luoma SN, Fuller CC, Anima R, Clifton HE, Trumbore S (1992) Evidence from Cd/Ca ratios in foraminifera for greater upwelling off California 4,000 years ago. Nature 358:54–56

    Article  Google Scholar 

  • Weber JN (1973) Incorporation of strontium into reef coral skeletal carbonate. Geochim Cosmochim Acta 37:2173–2190

    Article  CAS  Google Scholar 

  • Weber JN, Woodhead PMJ (1970) Carbon and oxygen isotope fractionation in the skeletal carbonate of reef-building corals. Chem Geol 6:93–117

    Article  CAS  Google Scholar 

  • Weber JN, Woodhead PMJ (1972) Temperature dependence of oxygen-18 concentration in reef carbonates. J Geophys Res 77:463–473

    Article  CAS  Google Scholar 

  • Wei G, Sun M, Li X, Nie B (2000) Mg/Ca, Sr/Ca and U/Ca ratios of a Porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature. Paleogeogr Paleoclim Paleoecol 162:59–74

    Article  Google Scholar 

  • Weis D, Kieffer B, Maerschalk C, Pretorius W, Barling J (2005) High-precision Pb-Sr-Nd-Hf isotopic characterization of USGS BHVO-1 and BHVO-2 reference materials. Geochem Geophy Geosyst 6

  • Yi W, Halliday AN, Lee DC, Rehkamper M (1998) Precise determination of cadmium, indium and tellurium using multiple collector ICP-MS. Geostand. Newslett. 22:173–179

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The support of the Swiss National Science Foundation (SNF) through Grants 20MA21-115944 and 200020-140618 in the frame of the European Science Foundation (ESF) EUROCORES Program EuroMARC is acknowledged. This work is a contribution to the European Project on Ocean Acidification (EPOCA), which received funding from the European Community’s Seventh Framework Program (FP7/2007-2013) under Grant Agreement No. 211384. We would like to thank M. Joachimski (GeoZentrum Nordbayern, Erlangen, Germany) for analyses of C and O isotopes. Thanks are due to M. Holcomb (Perth University, Australia) for fruitful discussion and an anonymous reviewer for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elias Samankassou.

Additional information

Communicated by Geology Editor Prof. Bernhard Riegl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pretet, C., Reynaud, S., Ferrier-Pagès, C. et al. Effect of salinity on the skeletal chemistry of cultured scleractinian zooxanthellate corals: Cd/Ca ratio as a potential proxy for salinity reconstruction. Coral Reefs 33, 169–180 (2014). https://doi.org/10.1007/s00338-013-1098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-013-1098-x

Keywords

Navigation