Skip to main content
Log in

Ubiquitous associations and a peak fall prevalence between apicomplexan symbionts and reef corals in Florida and the Bahamas

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Although apicomplexans are a widely recognized and important parasitic group, little is known about those associated with invertebrates, such as reef-building scleractinian corals. To resolve the potential impact of apicomplexans on coral health, it is first necessary to further describe this group of putative parasites and determine their prevalence among host species. Here, it was hypothesized that apicomplexan prevalence would vary seasonally, similar to what occurs in other marine apicomplexans as well as some coral symbionts. To test this, Caribbean scleractinian species Porites astreoides, Montastraea (=Orbicella) annularis, M. (=O.) faveolata, and Siderastrea siderea were sampled seasonally from two reefs each in the Florida Keys and the Bahamas for 9- and 5.5-year periods, respectively. Utilizing a PCR-based screening assay, apicomplexan DNA was detected from most Floridian (80.1 %: n = 555/693) and Bahamian (90.7 %: n = 311/343) coral tissue samples collected over these multi-year periods. Furthermore, apicomplexan DNA was detected from nearly all (98.7 %: n = 78/79) single polyps sampled at multiple locations within six M. faveolata colonies, indicating little to no intracolonial variation in the screening assay. Mixed-model logistic regression was utilized to determine the effects of season, host species, and reef on apicomplexan prevalence. The model identified a significant seasonal effect, with the highest apicomplexan prevalence occurring during fall. There also was a large effect of host species, with apicomplexan prevalence significantly lower among S. siderea colonies relative to the other species. While reef did not have a significant effect in the full model, there was a significant difference in apicomplexan prevalence between Floridian and Bahamian reefs for S. siderea, implying regional differences in this host species. Despite seasonal and species-specific differences in prevalence, apicomplexans are ubiquitous constituents of these particular scleractinian coral species from Florida and the Bahamas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Adl SM, Leander BS, Simpson AGB, Archibald JM, Anderson OR, Bass D, Bowser SS, Brugerolle G, Farmer MA, Karpov S, Kolisko M, Lane CE, Lodge DJ, Mann DG, Meisterfeld R, Mendoza L, Moestrup O, Mozley-Standridge SE, Smirnov AV, Spiegel FW (2007) Diversity, nomenclature, and taxonomy of protists. Syst Biol 56:684–689

    Article  PubMed  Google Scholar 

  • Albicócco AP, Vezzani D (2009) Further study on Ascogregarina culicis in temperate Argentina: Prevalence and intensity in Aedes aegypti larvae and pupae. J Invertebr Pathol 101:210–214

    Article  PubMed  Google Scholar 

  • Alker AP, Smith GW, Kim K (2001) Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals. Hydrobiologia 460:105–111

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Alvarez-Pellitero P, Perez A, Quiroga MI, Redondo MJ, Vázquez S, Riaza A, Palenzuela O, Sitjà-Bobadilla A, Nieto JM (2009) Host and environmental risk factors associated with Cryptosporidium scophthalmi (Apicomplexa) infection in cultured turbot, Psetta maxima (L.) (Pisces, Teleostei). Vet Parasitol 165:207–215

    Article  PubMed  Google Scholar 

  • Amo L, Fargallo JA, Martínez-Padilla J, Millán J, López P, Martín J (2005) Prevalence and intensity of blood and intestinal parasites in a field population of a Mediterranean lizard, Lacerta lepida. Parasitol Res 96:413–417

    Article  PubMed  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B (2011) lme4: Linear mixed-effects models using S4 classes (R package) Available at: http://cranr-projectorg/web/packages/lme4/indexhtml

  • Boothroyd JC, Dubremetz JF (2008) Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol 6:79–88

    Article  PubMed  CAS  Google Scholar 

  • Boullianne B, Evans RC, Smith TG (2007) Phylogentic analysis of Hepatozoon species (Apicomplexa: Adeleorina) infecting frogs of Nova Scotia, Canada, determined by ITS-1 sequences. J Parasitol 93:1435–1441

    Article  Google Scholar 

  • Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc Lond 166:465–529

    Article  Google Scholar 

  • Burki F, Shalchian-Tabrizi K, Pawlowski J (2008) Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biol Lett 4:366–369

    Article  PubMed  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margulis et al. revisited. J Parasitol 83:575–583

    Article  PubMed  CAS  Google Scholar 

  • Cavada F, Ayala R, Troccoli L, Cruz-Motta JJ (2011) Microalgae from the mucus layer of two massive corals: more than sunken plankton. Mar Biol 158:2495–2504

    Article  Google Scholar 

  • Clopton RE, Gold RE (1996) Host specificity of Gregarina blattarum von Siebold, 1839 (Apicomplexa: Eugregarinida) among five species of domiciliary cockroaches. J Invertebr Pathol 67:219–223

    Article  PubMed  Google Scholar 

  • Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Bermingham E (1992) DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol 114:317–325

    Article  CAS  Google Scholar 

  • Collantes-Fernández E, Alvarez-García G, Pérez-Pérez V, Pereira-Bueno J, Ortega-Mora LM (2004) Characterization of pathology and parasite load in outbred and inbred mouse models of chronic Neospora caninum infection. J Parasitol 90:579–583

    Article  PubMed  Google Scholar 

  • Cróquer A, Bastidas C, Lipscomb D, Rodríguez-Martínez RE, Jordan-Dahlgren E, Guzman HM (2006) First report of folliculinid ciliates affecting Caribbean scleractinian corals. Coral Reefs 25:187–191

    Article  Google Scholar 

  • Edmunds PJ, Gates RD, Gleason DF (2001) The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances. Mar Biol 139:981–989

    Article  Google Scholar 

  • Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985

    Article  PubMed  CAS  Google Scholar 

  • Field SG, Michiels NK (2005) Parasitism and growth in the earthworm Lumbricus terrestris: fitness costs of the gregarine parasite Monocystis sp. Parasitology 130:397–403

    Article  PubMed  CAS  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanog 45:677–685

    Article  CAS  Google Scholar 

  • Fox J, Weisberg S (2011) An R Companion to Applied Regression. Sage, Thousand Oaks, CA

    Google Scholar 

  • Gantar M, Kaczmarsky LT, Stanic D, Miller AW, Richardson LL (2011) Antibacterial activity of marine and black band disease cyanobacteria against coral-associated bacteria. Mar Drugs 9:2089–2105

    Article  PubMed  CAS  Google Scholar 

  • Gochfeld DJ, Olson JB, Slattery M (2006) Colony versus population variation in susceptibility and resistance to dark spot syndrome in the Caribbean coral Siderastrea siderea. Dis Aquat Org 69:53–65

    Article  PubMed  Google Scholar 

  • Godfrey SS, Nelson NJ, Bull CM (2011) Ecology and dynamics of the blood parasite, Hepatozoon tuatarae (Apicomplexa), in Tuatara (Sphenodon punctatus) on Stephens Island, New Zealand. J Wildlife Dis 47:126–139

    Google Scholar 

  • Goulet TL, Coffroth MA (2004) The genetic identity of dinoflagellate symbionts in Caribbean octocorals. Coral Reefs 23:465–472

    Google Scholar 

  • Gutner-Hoch E, Fine M (2011) Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals. Coral Reefs 30:643–650

    Article  Google Scholar 

  • Hillis DM, Dixon MT (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66:411–453

    Article  PubMed  CAS  Google Scholar 

  • Jaeger TF (2008) Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. J Mem Lang 59:434–446

    Article  PubMed  Google Scholar 

  • Jäkel T, Burgstaller H, Frank W (1996) Sarcocystis singaporensis: studies on host specificity, pathogenicity, and potential use as a biocontrol agent of wild rats. J Parasitol 82:280–287

    Article  PubMed  Google Scholar 

  • Janouskovec J, Horák A, Barott KL, Rohwer FL, Keeling PJ (2012) Global analysis of plastid diversity reveals apicomplexan- related lineages in coral reefs. Curr Biol 22:R518–R519

    Article  PubMed  CAS  Google Scholar 

  • Kemp DW, Fitt WK, Schmidt GW (2008) A microsampling method for genotyping coral symbionts. Coral Reefs 27:289–293

    Article  Google Scholar 

  • Kim K, Weiss LM (2004) Toxoplasma gondii: the model apicomplexan. Int J Parasit 34:423–432

    Article  CAS  Google Scholar 

  • Knowlton N, Rohwer FL (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S61

    Article  PubMed  Google Scholar 

  • Kvennefors ECE, Sampayo E, Kerr C, Vieira G, Roff G, Barnes AC (2012) Regulations of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 63:605–618

    Article  PubMed  CAS  Google Scholar 

  • Kvicerova J, Ptackova P, Modry D (2007) Endogenous development, pathogenicity and host specificity of Eimeria cahirinensis Couch, Blaustein, Duszynski, Shenbrot and Nevo, 1997 (Apicomplexa: Eimeriidae) from Acomys dimidiatus (Cretzschmar 1826) (Rodentia: Muridae) from the Near East. Parasitol Res 100:219–226

    Article  PubMed  Google Scholar 

  • LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  • Landau H, Galtsoff PS (1951) Distribution of Nematopsis infection on the oyster grounds of the Chesapeake Bay and in other waters of the Atlantic and Gulf states. Tex J Sci 3:115–130

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier Science, Amsterdam

    Google Scholar 

  • Locklin JL, Vodopich DS (2010) Patterns of gregarine parasitism in dragonflies: host, habitat, and seasonality. Parasitol Res 107:75–87

    Article  PubMed  Google Scholar 

  • Martin BD, Schwab E (2013) Current usage of symbiosis and associated terminology. Int J Biol 5:32–45

    Google Scholar 

  • McGuire MP (1998) Timing of larval release by Porites astreoides in the northern Florida Keys. Coral Reefs 17:369–375

    Article  Google Scholar 

  • Miller MA, Conrad PA, Harris M, Hatfield B, Langlois G, Jessup DA, Magargal SL, Packham AE, Toy-Choutka S, Melli AC, Murray MA, Gulland FM, Grigg ME (2010) A protozoal-associated epizootic impacting marine wildlife: Mass-mortality of southern sea otters (Enhydra lutris nereis) due to Sarcocystis neurona infection. Vet Parasitol 172:183–194

    Article  PubMed  Google Scholar 

  • Molnár K, Ostoros G, Baska F (2005) Cross-infection experiments confirm the host specificity of Goussia spp. (Eimeriidae: Apicomplexa) parasitizing cyprinid fish. Acta Protozool 44:43–49

    Google Scholar 

  • Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJ, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963

    Article  PubMed  CAS  Google Scholar 

  • Morales ME, Ocampo CB, Cadena H, Copeland CS, Termini M, Wesson DM (2005) Differential identification of Ascogregarina species (Apicomplexa: Lecudinidae) in Aedes Aegypti and Aedes albopictus (Diptera: Culicidae) by polymerase chain reaction. J Parasitol 91:1352–1356

    Article  PubMed  CAS  Google Scholar 

  • Morsy K, Bashtar A-R, Abdel-Ghaffar F, Mehlhorn H, Quraishy SA, Al-Ghamdi A, Koura E, Maher S (2012) Sarcocystis acanthocolubri sp. n. infecting three lizard species of the genus Acanthodactylus and the problem of host specificity. Light and electron microscopic study. Parasitol Res 110:355–362

    Article  PubMed  Google Scholar 

  • Motriuk-Smith D, Seville RS, Oliver CE, Hofmann DL, Smith AW (2009) Species of Eimeria (Apicomplexa: Eimeriidae) from tree squirrels (Sciurus niger) (Rodentia: Sciuridae) and analysis of the ITS1, ITS2, and 5.8S rDNA. J Parasitol 95:191–197

    Article  PubMed  CAS  Google Scholar 

  • Mydlarz LD, Holthouse SF, Peters EC, Harvell CD (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS ONE 3:e1811

    Article  PubMed  Google Scholar 

  • Mydlarz LD, Couch CS, Weil E, Smith G, Harvell CD (2009) Immune defenses of healthy, bleached and diseased Montastraea faveolata during a natural bleaching event. Dis Aquat Org 87:67–78

    Article  PubMed  CAS  Google Scholar 

  • Mydlarz LD, McGinty ES, Harvell CD (2010) What are the physiological and immunological responses of coral to climate warming and disease? J Exp Biol 213:934–945

    Article  PubMed  Google Scholar 

  • Odense PH, Logan VH (1976) Prevalence and morphology of Eimeria gadi (Fiebirger, 1913) in the Haddock. J Protozool 23:564–571

    PubMed  CAS  Google Scholar 

  • Peters EC (1984) A survey of cellular reactions to environmental stress and disease in Caribbean scleractinian corals. Helgol Mar Res 37:113–137

    Google Scholar 

  • Plattner F, Soldati-Favre D (2008) Hijacking of host cellular functions by the Apicomplexa. Annu Rev Microbiol 62:471–487

    Article  PubMed  CAS  Google Scholar 

  • Pluthero FG (1993) Rapid purification of high-activity Taq DNA polymerase. Nucleic Acids Res 21:4850–4851

    Article  PubMed  CAS  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadelmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  PubMed  CAS  Google Scholar 

  • Prokopowicz AJ, Rueckert S, Leander BS, Michaud J, Fortier L (2010) Parasitic infection of the hyperiid amphipod Themisto libellula in the Canadian Beaufort Sea (Arctic Ocean), with a description of Ganymedes themistos sp. n. (Apicomplexa, Eugregarinorida). Polar Biol 33:1339–1350

    Article  Google Scholar 

  • Reiczigel J (2003) Confidence intervals for the binomial parameter: some new considerations. Stat Med 22:611–621

    Article  PubMed  Google Scholar 

  • Reshef L, Koren O, Loya Y, Zllber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  PubMed  CAS  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Rohwer FL, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Rosenberg I-K (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  PubMed  CAS  Google Scholar 

  • Rowan R, Powers DA (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Article  CAS  Google Scholar 

  • Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232

    PubMed  Google Scholar 

  • Ruxton GD, Beauchamp G (2008) Time for some a priori thinking about post hoc testing. Behav Ecol 19:690–693

    Article  Google Scholar 

  • Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39

    Article  PubMed  CAS  Google Scholar 

  • Santos SR, Taylor DJ, Kinzie RA, Hidaka M, Sakai K, Coffroth MA (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111

    Article  PubMed  CAS  Google Scholar 

  • Sawyer TK, Newman MW, Otto SA (1973) Seasonal pathology in the American oyster associated with a gregarine-like intestinal parasite. J Protozool 20:511

    Google Scholar 

  • Schultz A, Underhill LG, Earlé R, Underhil G (2011) Seasonality, distribution and taxonomic status of avian haemosporidian parasites within the Greater Cape Town area, South Africa. Ostrich 82:141–154

    Article  Google Scholar 

  • Scott JS (1981) Alimentary tract parasites of haddock (Melanogrammus aeglefinus L.) on the Scotian shelf. Can J Zool 59:2244–2252

    Article  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380

    Article  PubMed  CAS  Google Scholar 

  • Sibley LD (2004) Intracellular parasite invasion strategies. Science 204:248–253

    Article  Google Scholar 

  • Smallridge CJ, Bull CM (2000) Prevalence and intensity of the blood parasite Hemolivia mariae in a field population of the skink Tiliqua rugosa. Parasitol Res 86:655–660

    Article  PubMed  CAS  Google Scholar 

  • Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434:214–217

    Article  PubMed  CAS  Google Scholar 

  • Théodoridès J, Desportes I (1975) Sporozoaires d’invertébrés pélagiques de Villefranche-Sur-Mer (étude descriptive et faunistique). Protistologica 11:205–220

    Google Scholar 

  • Thornhill DJ, Fitt WK, Schmidt GW (2006a) Highly stable symbioses among western Atlantic brooding corals. Coral Reefs 25:515–519

    Article  Google Scholar 

  • Thornhill DJ, LaJeunesse TC, Kemp DW, Fitt WK, Schmidt GW (2006b) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  • Thornhill DJ, Xiang Y, Fitt WK, Santos SR (2009) Reef endemism, host specificity and temporal stability in populations of symbiotic dinoflagellates from two ecologically dominant Caribbean corals. PLoS ONE 4:e6262

    Article  PubMed  Google Scholar 

  • Thornhill DJ, Doubleday K, Kemp DW, Santos SR (2010) Host hybridization alters specificity of cnidarian-dinoflagellate associations. Mar Ecol Prog Ser 420:113–123

    Article  Google Scholar 

  • Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, Reynolds JM, Schmidt GW, Shannon T, Warner ME, Fitt WK (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS ONE 6:e29535

    Article  PubMed  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2002) Genetic evidence for a protozoan (phylum Apicomplexa) associated with corals of the Montastraea annularis species complex. Coral Reefs 21:143–146

    Google Scholar 

  • Tuntiwaranuruk C, Chalermwat K, Pongsakchat V, Meepool A, Upatham ES, Kruatrachue M (2008) Infection of Nematopsis oocysts in different size classes of the farmed mussel Perna viridis in Thailand. Aquaculture 281:12–16

    Article  Google Scholar 

  • Upton SJ, Peters EC (1986) A new and unusual species of coccidium (Apicomplexa: Agamococcidiorida) from Caribbean scleractinian corals. J Invertebr Pathol 47:184–193

    Article  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AM, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Lond B 268:1759–1767

    Article  Google Scholar 

  • van Oppen MJH, Mieog JC, Sanchez CA, Fabricius KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14:2403–2417

    Article  PubMed  Google Scholar 

  • Vilcins I-ME, Old JM, Deane E (2009) Detection of a Hepatozoon and spotted fever group Rickettsia species in the common marsupial tick (Ixodes tasmani) collected from wild Tasmanian devils (Sarcophilus harrisii), Tasmania. Vet Parasitol 162:23–31

    Article  PubMed  Google Scholar 

  • Walker G, Dorrell RG, Schlacht A, Dacks JB (2011) Eukaryotic systematics: a user’s guide for cell biologists and parasitologists. Parasitology 138:1638–1663

    Article  PubMed  Google Scholar 

  • Ward JR, Kim K, Harvell CD (2007) Temperature affects coral disease resistance and pathogen growth. Mar Ecol Prog Ser 329:115–121

    Article  Google Scholar 

  • Warner ME, Chilcoat GC, McFarland FK, Fitt WK (2002) Seasonal fluctuations in the photosynthetic capacity of photosystem II in symbiotic dinoflagellates in the Caribbean reef-building coral Montastraea. Mar Biol 141:31–38

    Article  CAS  Google Scholar 

  • Weatherhead PJ, Bennett GF (1992) Ecology of parasitism of brown-headed cowbirds by haematozoa. Can J Zool 70:1–7

    Article  Google Scholar 

  • Yellowlees D, Rees TAV, Leggat W (2008) Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Environ 31:679–694

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. F. F. Bartol and Dr. T. D. Steury for statistical advice and Drs. K. M. Halanych, C. A. Sundermann, N. E. Chadwick, as well as E. E. Kirk, members of the Molette Lab at Auburn University, and three anonymous reviewers for comments that greatly improved this work. Samples used in this project were collected through funding by National Science Foundation grants (9906976 and 0137007), National Oceanic and Atmospheric Administration, the Office of Naval Research, and the Bleaching Group of the Coral Reef Targeted Research and Capacity Building for Management to WFK and G. W. Schmidt. This work also was supported by grants from the Auburn University Graduate School and the PADI Foundation (#4005) to NLK. This manuscript represents contributions #104 and #11 from the Auburn University (AU) Marine Biology Program and Molette Biology Laboratory for Environmental and Climate Change Studies, respectively, and #31 from the Key Largo Marine Research Laboratory. We also thank the Florida Keys National Marine Sanctuary for permitting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Kirk.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirk, N.L., Thornhill, D.J., Kemp, D.W. et al. Ubiquitous associations and a peak fall prevalence between apicomplexan symbionts and reef corals in Florida and the Bahamas. Coral Reefs 32, 847–858 (2013). https://doi.org/10.1007/s00338-013-1038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-013-1038-9

Keywords

Navigation