Skip to main content
Log in

A simple temperature-based model predicts the upper latitudinal limit of the temperate coral Astrangia poculata

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

A few hardy ahermatypic scleractinian corals occur in shallow waters well outside of the tropics, but little is known concerning their distribution limits at high latitudes. Using field data on the growth of Astrangia poculata over an annual period near its northern range limit in Rhode Island, USA, we tested the hypothesis that the distribution of this coral is limited by low temperature. A simple model based on satellite sea surface temperature and field growth data at monthly temporal resolution was used to estimate annual net coral growth north and south of the known range limit of A. poculata. Annual net coral growth was the result of new polyp budding above ~10 °C minus polyp loss below ~10 °C, which is caused by a state of torpor that leads to overgrowth by encroaching and settling organisms. The model accurately predicted A. poculata’s range limit around Cape Cod, Massachusetts, predicting no net growth northward as a result of corals’ inability to counteract polyp loss during winter with sufficient polyp budding during summer. The model also indicated that the range limit of A. poculata coincides with a decline in the benefit of associating with symbiotic dinoflagellates (Symbiodinium B2/S. psygmophilum), suggesting that symbiosis may become a liability under colder temperatures. While we cannot exclude the potential role of other coral life history traits or environmental factors in setting A. poculata’s northern range limit, our analysis suggests that low temperature constrains the growth and persistence of adult corals and would preclude coral growth northward of Cape Cod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bruno JF, Witman JD (1996) Defense mechanisms of scleractinian cup corals against overgrowth by colonial invertebrates. J Exp Mar Biol Ecol 207:229–241

    Article  Google Scholar 

  • Cairns SD (2007) Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322

    Google Scholar 

  • Casey KS, Brandon TB, Cornillon P, Evans R (2010) The past, present and future of the AVHRR Pathfinder SST program. In: Barale V, Gower JFR, Alberotanza L (eds) Oceanography from space: revisited. Springer, New York, pp 323–341

    Google Scholar 

  • Churchill JH, Pettigrew NR, Signell RP (2005) Structure and variability of the Western Maine Coastal Current. Deep-Sea Res II 52:2392–2410

    Article  Google Scholar 

  • Cummings C (1983) The biology of Astrangia danae. PhD thesis, University of Rhode Island, Kingston, p 147

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    Article  PubMed  CAS  Google Scholar 

  • Dimond J, Carrington E (2007) Temporal variation in the symbiosis and growth of the temperate scleractinian coral Astrangia poculata. Mar Ecol Prog Ser 341:161–172

    Article  Google Scholar 

  • Dimond J, Carrington E (2008) Symbiosis regulation in a facultatively symbiotic temperate coral: zooxanthellae division and expulsion. Coral Reefs 27:601–604

    Article  Google Scholar 

  • Engle VD, Summers JK (2000) Biogeography of benthic macroinvertebrates in estuaries along the Gulf of Mexico and western Atlantic coasts. Hydrobiologia 436:17–33

    Article  Google Scholar 

  • Eytan RI, Hayes M, Arbour-Reily P, Miller M, Hellberg ME (2009) Nuclear sequences reveal mid-range isolation of an imperilled deep-water coral population. Mol Ecol 18:2375–2389

    Article  PubMed  CAS  Google Scholar 

  • Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnol Oceanogr 56:1429–1438

    Article  Google Scholar 

  • Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnol Oceanogr 45:677–685

    Article  CAS  Google Scholar 

  • Gaston KJ (2009) Geographic range limits: achieving synthesis. Proc R Soc B 276:1395–1406

    Article  PubMed  Google Scholar 

  • Grace SP (1996) The effects of water flow on Astrangia poculata. University of Rhode Island, Kingston, MS thesis, p 146

    Google Scholar 

  • Grace SP (2004) Ecomorphology of the temperate scleractinian Astrangia poculata: coral–macroalgal interactions in Narragansett Bay (Rhode Island). PhD thesis, University of Rhode Island, Kingston, p 182

  • Hale SS (2010) Biogeographical patterns of marine benthic macroinvertebrates along the Atlantic coast of the Northeastern USA. Estuaries Coasts 33:1039–1053

    Article  CAS  Google Scholar 

  • Hare JA, Churchill JH, Cowen RK, Berger TJ, Cornillon PC, Dragos P, Glenn SM, Govoni JJ, Lee TN (2002) Routes and rates of larval fish transport from the southeast to the northeast United States continental shelf. Limnol Oceanogr 47:1774–1789

    Article  Google Scholar 

  • Hargitt CW (1914) The Anthozoa of the Woods Hole region. Bull US Bureau Fish 32:223–254

    Google Scholar 

  • Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Biol Ecol 386:27–33

    Article  Google Scholar 

  • Holcomb M, Cohen AL, McCorkle DC (2012) An investigation of the calcification response of the scleractinian coral Astrangia poculata to elevated pCO2 and the effects of nutrients, zooxanthellae and gender. Biogeosciences 9:29–39

    Article  CAS  Google Scholar 

  • Hoogenboom MO, Rodolfo-Metalpa R, Ferrier-Pagès C (2010) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. J Exp Biol 213:2399–2409

    Article  PubMed  Google Scholar 

  • Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2011) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nature Climate Change 2:116–120

    Article  Google Scholar 

  • Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian Astrangia danae. II. Effect of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Mar Biol 76:135–148

    Article  CAS  Google Scholar 

  • Johannes RE, Weibe WJ, Crossland CJ, Rimmer DW, Smith SV (1983) Latitudinal limits to coral reef growth. Mar Ecol Prog Ser 11:201–208

    Article  Google Scholar 

  • Kleypas JA, McManus JW, Meñez LAB (1999) Environmental limits to coral reef development: Where do we draw the line? Am Zool 39:146–159

    Google Scholar 

  • LaJeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with Cnidaria. J Phycol. doi:10.1111/j.1529-8817.2012.01217.x

  • Lentz SJ (2008) Observations and a model of the mean circulation over the Middle Atlantic Bight continental shelf. J Phys Oceanogr 38:1203–1221

    Article  Google Scholar 

  • Markle DF, Scott WB, Kohler AC (1980) New and rare records of Canadian fishes and the influence of hydrography on resident and nonresident Scotian Shelf ichthyofauna. Can J Fish Aquat Sci 37:49–65

    Article  Google Scholar 

  • Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. Mar Ecol Prog Ser 122:217–225

    Article  Google Scholar 

  • Miller MW (1998) Coral/seaweed competition and the control of reef community structure within and between latitudes. Oceanogr Mar Biol Annu Rev 36:65–96

    Google Scholar 

  • Miller MW, Hay ME (1996) Coral–seaweed–grazer–nutrient interactions on temperate reefs. Ecol Monogr 66:323–344

    Article  Google Scholar 

  • Muller-Parker G, Davy SK (2001) Temperate and tropical sea anemone symbioses. Invertebr Biol 120:104–123

    Article  Google Scholar 

  • Peters EC, Pilson MEQ (1985) A comparative study of the effects of sediment on symbiotic and asymbiotic colonies of the coral Astrangia danae Milne Edwards and Haime, 1849. J Exp Mar Biol Ecol 92:215–230

    Article  Google Scholar 

  • Peters EC, Cairns SD, Pilson MEQ, Wells JW, Jaap WC, Lang JC, Vasleski CE, St. Pierre Gollahon L (1988) Nomenclature and biology of Astrangia poculata (=A. danae, =A.astreiformis) (Cnidaria: Anthozoa). Proc Biol Soc Wash 101:234–250

    Google Scholar 

  • Pörtner HO (2002) Climate change and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol 132A:739–761

    Google Scholar 

  • Ries JB, Cohen AL, McCorkle DC (2010) A nonlinear calcification response to CO2-induced ocean acidification by the temperate coral Oculina arbuscula. Coral Reefs 29:661–674

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Martin S, Ferrier-Pages C, Gattuso JP (2010) Response of the temperate coral Cladocora caespitosa to mid and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences 7:289–300

    Article  CAS  Google Scholar 

  • Rützler K (2002) Impact of crustose clionid sponges on Caribbean reef corals. Acta Geol Hispanica 37:61–72

    Google Scholar 

  • Salisbury J, Green M, Hunt C, Campbell J (2008) Coastal acidification by rivers: a threat to shellfish? EOS Trans Am Geophys Union 89:513–514

    Article  Google Scholar 

  • Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Annu Rev Mar Sci 3:509–535

    Article  Google Scholar 

  • Sanford E, Holzman SB, Haney RA, Rand DM, Bertness MD (2006) Larval tolerance, gene flow, and the northern geographic range limit of fiddler crabs. Ecology 87:2882–2894

    Article  PubMed  Google Scholar 

  • Schuhmacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9

    Article  Google Scholar 

  • Sexton JP, Mcintyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annu Rev Ecol Evol Syst 40:415–436

    Article  Google Scholar 

  • Smale DA, Wernberg T (2009) Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar Ecol Prog Ser 387:27–37

    Article  Google Scholar 

  • Smith-Keune C, van Oppen M (2006) Genetic structure of a reef-building coral from thermally distinct environments on the Great Barrier Reef. Coral Reefs 25:493–502

    Article  Google Scholar 

  • Stachowicz JJ, Hay ME (1999) Mutualism and coral persistence: the role of herbivore resistance to algal chemical defense. Ecology 80:2085–2101

    Article  Google Scholar 

  • Stanley GD (2003) The evolution of modern corals and their early history. Earth-Sci Rev 60:195–225

    Article  Google Scholar 

  • Stanley GD, Swart PK (1995) Evolution of the coral-zooxanthellae symbiosis during the Triassic: A geochemical approach. Paleobiology 21:179–199

    Google Scholar 

  • Steen RG (1986) Evidence for heterotrophy by zooxanthellae in symbiosis with Aiptasia pulchella. Biol Bull 170:267–278

    Article  Google Scholar 

  • Szmant-Froelich A, Pilson MEQ (1980) The effects of feeding frequency and symbiosis with zooxanthellae on the biochemical composition of Astrangia danae Milne Edwards & Haime 1848. J Exp Mar Biol Ecol 48:85–97

    Article  CAS  Google Scholar 

  • Szmant-Froelich A, Yevich P, Pilson MEQ (1980) Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol Bull 158:257–269

    Article  Google Scholar 

  • Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a western Atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135

    Article  CAS  Google Scholar 

  • Tremblay P, Peirano A, Ferrier-Pagès C (2011) Heterotrophy in the Mediterranean symbiotic coral Cladocora caespitosa: comparison with two other scleractinian species. Mar Ecol Prog Ser 422:165–177

    Article  Google Scholar 

  • Veron JEN (2000) Corals of the world, Vol 1–3. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Wares JP (2002) Community genetics in the northwestern Atlantic intertidal. Mol Ecol 11:1131–1144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Lemos-Eskin and C. Marks for diving assistance. This study was conceived at the January 2012 Astrangia Workshop hosted by Ocean Genome Legacy in Ipswich, Massachusetts and funded in part by the Philip Goelet Foundation. We are grateful to J. Churchill and two anonymous reviewers whose helpful comments improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Thornhill.

Additional information

Communicated by Biology Editor Dr. Anastazia Banaszak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimond, J.L., Kerwin, A.H., Rotjan, R. et al. A simple temperature-based model predicts the upper latitudinal limit of the temperate coral Astrangia poculata . Coral Reefs 32, 401–409 (2013). https://doi.org/10.1007/s00338-012-0983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-012-0983-z

Keywords

Navigation