Coral Reefs

, Volume 31, Issue 3, pp 741–752

Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales

  • C. Brahmi
  • I. Domart-Coulon
  • L. Rougée
  • D. G. Pyle
  • J. Stolarski
  • J. J. Mahoney
  • R. H. Richmond
  • G. K. Ostrander
  • A. Meibom
Report

DOI: 10.1007/s00338-012-0890-3

Cite this article as:
Brahmi, C., Domart-Coulon, I., Rougée, L. et al. Coral Reefs (2012) 31: 741. doi:10.1007/s00338-012-0890-3

Abstract

A method to label marine biocarbonates is developed based on a concentration enrichment of a minor stable isotope of a trace element that is a natural component of seawater, resulting in the formation of biocarbonate with corresponding isotopic enrichments. This biocarbonate is subsequently imaged with a NanoSIMS ion microprobe to visualize the locations of the isotopic marker on sub-micrometric length scales, permitting resolution of all ultra-structural details. In this study, a scleractinian coral, Pocillopora damicornis, was labeled 3 times with 86Sr-enhanced seawater for a period of 48 h with 5 days under normal seawater conditions separating each labeling event. Two non-specific cellular stress biomarkers, glutathione-S-transferase activity and porphyrin concentration plus carbonic anhydrase, an enzymatic marker involved in the physiology of carbonate biomineralization, as well as unchanged levels of zooxanthellae photosynthesis efficiency indicate that coral physiological processes are not affected by the 86Sr-enhancement. NanoSIMS images of the 86Sr/44Ca ratio in skeleton formed during the experiment allow for a determination of the average extension rate of the two major ultra-structural components of the coral skeleton: Rapid Accretion Deposits are found to form on average about 4.5 times faster than Thickening Deposits. The method opens up new horizons in the study of biocarbonate formation because it holds the potential to observe growth of calcareous structures such as skeletons, shells, tests, spines formed by a wide range of organisms under essentially unperturbed physiological conditions.

Keywords

Biomineralization Scleractinia Skeleton 86Sr-labeling Growth dynamics Ecotoxicology 

Supplementary material

338_2012_890_MOESM1_ESM.doc (79 kb)
Supplementary material 1 (DOC 79 kb)
338_2012_890_MOESM2_ESM.doc (44 kb)
Supplementary material 2 (DOC 44 kb)

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • C. Brahmi
    • 1
    • 2
  • I. Domart-Coulon
    • 2
  • L. Rougée
    • 3
  • D. G. Pyle
    • 4
  • J. Stolarski
    • 5
  • J. J. Mahoney
    • 4
  • R. H. Richmond
    • 3
  • G. K. Ostrander
    • 6
  • A. Meibom
    • 1
    • 7
  1. 1.Laboratoire de Minéralogie et Cosmochimie du Muséum UMR7202Muséum National d’Histoire NaturelleParisFrance
  2. 2.Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques UMR7208Muséum National d’Histoire NaturelleParisFrance
  3. 3.Pacific Biosciences Research CenterUniversity of Hawaii at Mano’a—Kewalo Marine LaboratoryHonoluluUSA
  4. 4.Department of Geology and GeophysicsUniversity of Hawaii at Mano’aHonoluluUSA
  5. 5.Institute of PaleobiologyPolish Academy of SciencesWarszawaPoland
  6. 6.Pacific Biosciences Research CenterUniversity of Hawaii at Mano’aHonoluluUSA
  7. 7.Laboratory for Biological GeochemistryEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations