Skip to main content

Advertisement

Log in

Transcriptomic responses to darkness stress point to common coral bleaching mechanisms

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a salient threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used complementary DNA (cDNA) microarrays for the corals Acropora palmata and Montastraea faveolata (containing >10,000 features) to measure differential gene expression during darkness stress. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were previously measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to hypoxia and endoplasmic reticulum stress as critical cellular events involved in molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and sampling locations were greater than differences between control and stressed fragments. This and previous coral microarray studies reveal the immense range of transcriptomic responses that are possible when studying two coral species that differ greatly in their ecophysiology, thus pointing to the importance of comparative approaches in forecasting how corals will respond to future environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Al-Horani FA, Tambutte E, Allemand D (2007) Dark calcification and the daily rhythm of calcification in the scleractinian coral, Galaxea fascicularis. Coral Reefs 26:531–538

    Article  Google Scholar 

  • Aranda M, Banaszak AT, Bayer T, Luyten JR, Medina M, Voolstra CR (2011) Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence. Mol Ecol 20:2955–2972

    Article  PubMed  CAS  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Ceulemans H, Bollen M (2004) Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 84:1–39

    Article  PubMed  CAS  Google Scholar 

  • Choudhury NK, Biswal UC (1979) Changes in photoelectron transport of chloroplasts isolated from dark stressed leaves of maize seedlings. Experientia 35:1036–1037

    Article  PubMed  CAS  Google Scholar 

  • Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80:539–549

    PubMed  CAS  Google Scholar 

  • DeSalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971

    Article  PubMed  CAS  Google Scholar 

  • DeSalvo MK, Sunagawa S, Voolstra CR, Medina M (2010a) Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Prog Ser 402:97–113

    Article  CAS  Google Scholar 

  • DeSalvo MK, Sunagawa S, Fisher PL, Voolstra CR, Iglesias-Prieto R, Medina M (2010b) Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol Ecol 19:1174–1186

    Article  PubMed  CAS  Google Scholar 

  • Doherty MJ, Moorhead G, Morrice N, Cohen P, Cohen PTW (1995) Amino-acid-sequence and expression of the hepatic glycogen-binding (G(L))-subunit of protein phosphatase-1. FEBS Lett 375:294–298

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (2003) Coral bleaching–how and why? Mar Pollut Bull 46:385–392

    Article  PubMed  CAS  Google Scholar 

  • Downs CA, Kramarsky-Winter E, Martinez J, Kushmaro A, Woodley CM, Loya Y, Ostrander GK (2009) Symbiophagy as a cellular mechanism for coral bleaching. Autophagy 5:211–216

    Article  PubMed  CAS  Google Scholar 

  • Dunn SR, Bythell JC, Le Tissier MDA, Burnett WJ, Thomason JC (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J Exp Mar Biol Ecol 272:29–53

    Article  Google Scholar 

  • Dunn SR, Thomason JC, Le Tissier MD, Bythell JC (2004) Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ 11:1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Dunn SR, Schnitzler CE, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc Lond, Ser B: Biol Sci 274:3079–3085

    Article  Google Scholar 

  • Dykens JA, Shick JM (1982) Oxygen production by endosymbiotic algae controls superoxide-dismutase activity in their animal host. Nature 297:579–580

    Article  CAS  Google Scholar 

  • Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Commun 304:11–17

    Article  PubMed  CAS  Google Scholar 

  • Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host cell detachment in symbiotic cnidarians: implications for coral bleaching. Biol Bull 182:324–332

    Article  Google Scholar 

  • Gates RD, Hoegh-Guldberg O, McFall-Ngai MJ, Bil KY, Muscatine L (1995) Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Natl Acad Sci USA 92:7430–7434

    Article  PubMed  CAS  Google Scholar 

  • Glynn PW, Perez M, Gilchrist SL (1985) Lipid decline in stressed corals and their crustacean symbionts. Biol Bull 168:276–284

    Article  CAS  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Juarez C (2004) Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol 145:621–631

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633

    Article  PubMed  CAS  Google Scholar 

  • Higuchi T, Fujimura H, Hitomi Y, Arakaki T, Oomori T, Suzuki Y (2011) Photochemical formation of hydroxyl radicals in tissue extracts of the coral Galaxea fascicularis. Photochem Photobiol 86:1421–1426

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein-phosphorylation. Trends Biochem Sci 18:172–177

    Article  PubMed  CAS  Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 1977:201–208

    Article  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Kultz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  PubMed  Google Scholar 

  • Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283

    Article  CAS  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278

    Article  PubMed  CAS  Google Scholar 

  • Levy O, Achituv Y, Yacobi YZ, Dubinsky Z, Stambler N (2006) Diel ‘tuning’ of coral metabolism: physiological responses to light cues. J Exp Biol 209:273–283

    Article  PubMed  CAS  Google Scholar 

  • Li J, Lee B, Lee AS (2006) Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 281:7260–7270

    Article  PubMed  CAS  Google Scholar 

  • Malhotra JD, Kaufman RJ (2007) The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol 18:716–731

    Article  PubMed  CAS  Google Scholar 

  • Maltepe E, Saugstad OD (2009) Oxygen in health and disease: regulation of oxygen homeostasis–clinical implications. Pediatr Res 65:261–268

    Article  PubMed  CAS  Google Scholar 

  • Mayfield AB, Gates RD (2007) Osmoregulation in anthozoan-dinoflagellate symbiosis. Comp Biochem Physiol, A: Mol Integr Physiol 147:1–10

    Article  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world 25: Coral reefs. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  • Musser RL, Thomas SA, Wise RR, Peeler TC, Naylor AW (1984) Chloroplast ultrastructure, chlorophyll fluorescence, and pigment composition in chilling-stressed soybeans. Plant Physiol 74:749–754

    Article  PubMed  CAS  Google Scholar 

  • Nii CM, Muscatine L (1997) Oxidative stress in the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943): Contribution of the animal to superoxide ion production at elevated temperature. Biol Bull 192:444–456

    Article  CAS  Google Scholar 

  • Polato NR, Voolstra CR, Schnetzer J, DeSalvo MK, Randall CJ, Szmant AM, Medina M, Baums IB (2010) Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata. PLoS One 5:e11221

    Article  PubMed  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen-peroxide. Plant Cell 6:65–74

    Article  PubMed  CAS  Google Scholar 

  • Reyes-Bermudez A, Lin ZY, Hayward DC, Miller DJ, Ball EE (2009) Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evol Biol 9:178

    Article  PubMed  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci USA 92:2850–2853

    Article  PubMed  CAS  Google Scholar 

  • Rowan R, Powers DA (1991) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Article  CAS  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2003) All roads lead to ATF4. Dev Cell 4:442–444

    Article  PubMed  CAS  Google Scholar 

  • Sandeman IM (2006) Fragmentation of the gastrodermis and detachment of zooxanthellae in symbiotic cnidarians: a role for hydrogen peroxide and Ca2 + in coral bleaching and algal density control. Rev Biol Trop 54:79–96

    Google Scholar 

  • Saragosti E, Tchernov D, Katsir A, Shaked Y (2011) Extracellular production and degradation of superoxide in the coral Stylophora pistillata and cultured Symbiodinium. PLoS One 5:e12508

    Article  Google Scholar 

  • Saxby T, Dennison WC, Hoegh-Guldberg O (2003) Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar Ecol Prog Ser 248:85–97

    Article  Google Scholar 

  • Schafer C, Hoffmann L, Heldt K, Lornejad-Schafer MR, Brauers G, Gehrmann T, Garrow TA, Haussinger D, Mayatepek E, Schwahn BC, Schliess F (2007) Osmotic regulation of betaine homocysteine-S-methyltransferase expression in H4IIE rat hepatoma cells. Am J Physiol Gastrointest Liver Physiol 292:G1089–G1098

    Article  PubMed  Google Scholar 

  • Schroth W, Ender A, Schierwater B (2005) Molecular biomarkers and adaptation to environmental stress in moon jelly (Aurelia spp.). Mar Biotechnol 7:449–461

    Article  PubMed  CAS  Google Scholar 

  • Schwarz JA, Brokstein PB, Voolstra C, Terry AY, Miller DJ, Szmant AM, Coffroth MA, Medina M (2008) Coral life history and symbiosis: functional genomic resources for two reef building caribbean corals, Acropora palmata and Montastraea faveolata. BMC Genomics 9:97

    Article  PubMed  Google Scholar 

  • Semenza GL (1998) Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev 8:588–594

    Article  PubMed  CAS  Google Scholar 

  • Shashar N, Cohen Y, Loya Y (1993) Extreme diel fluctuations of oxygen in diffusive boundary-layers surrounding stony corals. Biol Bull 185:455–461

    Article  Google Scholar 

  • Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11

    Article  Google Scholar 

  • Smith-Keune C, Dove S (2008) Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral. Mar Biotechnol 10:166–180

    Article  PubMed  CAS  Google Scholar 

  • Song JJ, Rhee JG, Suntharalingam M, Walsh SA, Spitz DR, Lee YJ (2002) Role of glutaredoxin in metabolic oxidative stress. Glutaredoxin as a sensor of oxidative stress mediated by H2O2. J Biol Chem 277:46566–46575

    Article  PubMed  CAS  Google Scholar 

  • Steen RG, Muscatine L (1987) Low-temperature evokes rapid exocytosis of symbiotic algae by a sea-anemone. Biol Bull 172:246–263

    Article  Google Scholar 

  • Strychar KB, Coates M, Sammarco PW, Piva TJ (2004) Bleaching as a pathogenic response in scleractinian corals, evidenced by high concentrations of apoptotic and necrotic zooxanthellae. J Exp Mar Biol Ecol 304:99–121

    Article  Google Scholar 

  • Sunagawa S, Wilson EC, Thaler M, Smith ML, Caruso C, Pringle JR, Weis VM, Medina M, Schwarz JA (2009) Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10:258

    Article  PubMed  Google Scholar 

  • Szmant AM, Gassman NJ (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Tambutte S, Tambutte E, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins J (2007) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151:71–83

    Article  CAS  Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  PubMed  CAS  Google Scholar 

  • Tchernov D, Kvitt H, Haramaty L, Bibby TS, Gorbunov MY, Rosenfeld H, Falkowski PG (2011) Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc Natl Acad Sci USA 108:9905–9909

    Article  PubMed  CAS  Google Scholar 

  • Townsend JP, Hartl DL (2002) Bayesian analysis of gene expression levels: statistical quantification of relative mRNA level across multiple strains or treatments. Genome Biol 3:RESEARCH0071

    Google Scholar 

  • Trench RK (1979) The cell biology of plant-animal symbiosis. Annu Rev Plant Physiol 30:453–485

    Article  Google Scholar 

  • Voolstra CR, Sunagawa S, Matz MV, Bayer T, Aranda M, Buschiazzo E, Desalvo MK, Lindquist E, Szmant AM, Coffroth MA, Medina M (2011) Rapid evolution of coral proteins responsible for interaction with the environment. PLoS One 6:e20392

    Article  PubMed  CAS  Google Scholar 

  • Wang J-T, Meng P-J, Sampayo EM, Tang S-L, Chen CA (2011) Photosystem II breakdown induced by reactive oxygen species in freshly-isolated Symbiodinium from Montipora (Scleractinia; Acroporidae). Mar Ecol Prog Ser 422:51–62

    Article  CAS  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066

    Article  PubMed  CAS  Google Scholar 

  • Weis VM, Smith GJ, Muscatine L (1989) A “CO2 supply” mechanism in zooxanthellate cnidarians: role of carbonic-anhydrase. Mar Biol 100:195–202

    Article  CAS  Google Scholar 

  • Winkler GS (2010) The mammalian anti-proliferative BTG/Tob protein family. J Cell Physiol 222:66–72

    Article  PubMed  CAS  Google Scholar 

  • Yamashiro H, Oku H, Onaga K (2005) Effect of bleaching on lipid content and composition of Okinawan corals. Fish Sci 71:448–453

    Article  CAS  Google Scholar 

  • Ye J, Koumenis C (2009) ATF4, an ER stress and hypoxia-inducible transcription factor and its potential role in hypoxia tolerance and tumorigenesis. Curr Mol Med 9:411–416

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Wang XJ (2008) GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis. Nucleic Acids Res 36:W358–W363

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the following people associated with STRI in Panamá: R. Collin, G. Jácome, P. Gondola, and other staff at the Bocas del Toro station and E. Gomez and J. Jara at the Naos Laboratory. We also thank M. A. Coffroth for initial input with tank experiments and the many members of the Medina Lab responsible for cDNA microarray construction. Lastly, we thank three anonymous reviewers whose comments greatly improved the manuscript. This study was supported through an STRI Pre-doctoral Fellowship and an NSF award to M.D. (OISE 0837455) and NSF awards to M.M. (BE-GEN 0313708 and IOS 0644438). This is contribution #4 of the STRI Caribbean Reef Futures initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mónica Medina.

Additional information

Communicated by Environment Editor Prof. Rob van Woesik.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeSalvo, M.K., Estrada, A., Sunagawa, S. et al. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms. Coral Reefs 31, 215–228 (2012). https://doi.org/10.1007/s00338-011-0833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0833-4

Keywords

Navigation