, Volume 13, Issue 9, pp 483-492

Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Methylenetetrahydrofolate reductase (MTHFR) reduces 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, the major carbon donor in the remethylation of homocysteine to methionine. Mild MTHFR deficiency, due to a common variant at nucleotide 677, has been reported to alter risk for several disorders including cardiovascular disease, neural tube defects, pregnancy complications, and certain cancers. Little is known about MTHFR regulation, since the complete cDNA and gene sequences have not been determined. In earlier work, we isolated and expressed a 2.2-kb human cDNA comprised of 11 coding exons, and we demonstrated that it encoded an active 70-kDa isoform. However, transcript sizes of approximately 7.5 kb and 9.5 kb and the presence of a second isoform of 77 kDa on Western blots suggested that cDNA sequences were incomplete. In this report, we characterized the complete cDNA and gene structure in human and mouse. Variable 5? and 3? UTR regions were identified, resulting in transcript heterogeneity. The 5? and 3? termini of the MTHFR cDNA were found to overlap with the 5? terminus of a chloride ion channel gene (CLCN-6) and the 3? terminus of an unidentified gene, respectively; this finding has resulted in finer mapping of MTHFR on Chromosome (Chr) 1p36.3. Ribonuclease protection assays identified clusters of transcriptional start sites, suggesting the existence of multiple promoters. MTHFR has several polyadenylation sites creating 3?UTR lengths of 0.2 kb–5.0 kb or 0.6 kb–4.0 kb in human and mouse, respectively. In both species, the previously reported exon 1 was redefined to approximately 3.0 kb in length and shown to be alternatively spliced. An important splice variant contains novel coding sequences; this cDNA was expressed and shown to encode the isozyme of 77 kDa. Our results, which suggest intricate regulation of MTHFR, will facilitate additional regulatory and functional studies of the different isoforms.