Date: 14 Feb 2014

Contribution to the reconstruction of central European fire history, based on the soil charcoal analysis of study sites in northern and central Germany

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Fire caused by humans played an important role in prehistoric clearance of woodland, which was a prerequisite for the rise of agriculture since at least the Neolithic revolution. Therefore, reconstructed fire history provides insights into the spread of agriculture. However, for central Europe, the past fire regime is still poorly known. Thus, to help to fill this gap, fire history has been investigated using data relevant at a local scale, which is the scale of woodland clearance processes according to local human practices. For this purpose, soil/soil sediment charcoal analysis has been conducted at four sites in northern Germany and five in central Germany. At each site, four to nine sequences of soil/soil sediment were excavated, described in the field and sampled. The sampled material has been differentiated by soil horizons formed in situ and colluvial sediments. The charcoal content of both types of sampled material was quantified and some of it was taxonomically analysed. Chronological information was obtained by radiocarbon dating 73 single charcoal pieces that had previously been identified taxonomically. Such data sets have permitted us to identify a minimum number of fire events for every site, which had burnt various types of woodlands and at different chronological phases. Based on the local scale data, regional trends were identified. Charcoals from the late Pleistocene and early Holocene derived from conifers only, and these most probably indicate wildfire events in flammable woodlands. Charcoals dated to the mid and late Holocene derived predominantly from broad-leaved trees probably resulting from human-ignited fires in weakly flammable woodlands. The calculated minimum fire frequency indicates an increase in fire occurrences during the Holocene following the phases of cultural human development. This supports the importance of human-made fire in northern central Europe during the Holocene. Such minimum fire frequency appears much higher during the iron age and the middle ages, but not before. This fits with the general statement of regional woodland loss and landscape opening relatively recently, during the late Holocene.

Communicated by M. Rösch.