Skip to main content
Log in

Thickening of the cauda equina roots: a common finding in Krabbe disease

  • Paediatric
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

Evaluation of Krabbe disease burden and eligibility for hematopoietic stem cell transplantation are often based on neuroimaging findings using the modified Loes scoring system, which encompasses central but not peripheral nervous system changes. We show that quantitative evaluation of thickened cauda equina nerve roots may improve the evaluation of Krabbe disease and therapeutic guidance.

Methods

Lumbar spine MRI scans of patients obtained between March 2013 and September 2013 were retrospectively evaluated and compared to those of controls. Quantitative evaluation of cauda equina roots was performed on the axial plane obtained approximately 5 mm below the conus medullaris. The largest nerves in the right and left anterior quadrants of the spinal canal were acquired.

Results

Fifteen symptomatic patients with Krabbe disease (5–44 months old) and eleven age-matched controls were evaluated. The average areas (mm2) of anterior right and left nerves were 1.40 and 1.23, respectively, for patients and 0.61 and 0.60 for controls (differences: 0.79 and 0.63; p < 0.001).

Conclusions

Cauda equina nerve root thickening is associated with Krabbe disease in both treated and untreated patients. Adding lumbar spine MRI to the current neurodiagnostic protocols, which fails to account for peripheral nerve abnormalities, will likely facilitate the diagnosis of Krabbe disease.

Key Points

• Neuroimaging is valuable for evaluating cauda equina nerve abnormality in Krabbe disease

• MRI can be used to quantitatively evaluate cauda equina nerve thickening

• Lumbar MRI could be useful for diagnosis and treatment monitoring of Krabbe disease

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CIPD:

Chronic inflammatory demyelinating polyneuropathy

GALC:

Galactosylceramidase

GLD:

Globoid cell leukodystrophy

MLD:

Metachromatic leukodystrophy

References

  1. Zlotogora J, Chakraborty S, Knowlton RG, Wenger DA (1990) Krabbe disease locus mapped to chromosome 14 by genetic linkage. Am J Hum Genet 47:37–44

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Suzuki K, Suzuki Y (1970) Globoid cell leucodystrophy (Krabbe’s disease): deficiency of galactocerebroside beta-galactosidase. Proc Natl Acad Sci U S A 66:302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ida H, Kawame F, Kim SU, Eto Y (1990) Abnormality in cultured oligodendrocytes and Schwann cells isolated from the twitcher mouse. Mol Chem Neuropathol 13:195–204

    Article  CAS  PubMed  Google Scholar 

  4. Warner T, Hammans S (2009) Practical Guide to Neurogenetics, 1st edn. Elsevier Health Sciences, Philadelphia

    Google Scholar 

  5. Wenger D, Suzuki K, Suzuki Y, Suzuk K (2001) The metabolic and molecular basis of inherited diseases, 9th edn. McGraw-Hill, New York

    Google Scholar 

  6. Harcourt B, Ashton N (1973) Ultrastructure of the optic nerve in Krabbe’s leucodystrophy. Br J Ophthalmol 57:885–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brownstein S, Meagher-Villemure K, Polomeno RC, Little JM (1978) Optic nerve in globoid leukodystrophy (Krabbe’s disease). Ultrastructural changes. Arch Ophthalmol 96:864–870

    Article  CAS  PubMed  Google Scholar 

  8. Barkovich A (2005) Pediatric neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  9. Loes DJ, Peters C, Krivit W (1999) Globoid cell leukodystrophy: distinguishing early-onset from late-onset disease using a brain MR imaging scoring method. AJNR Am J of Neuroradiol 20:316–323

  10. Lyon G, Hagberg B, Evrard P, Allaire C, Pavone L, Vanier M (1991) Symptomatology of late onset Krabbe’s leukodystrophy: the European experience. Dev Neurosci 13:240–244

    Article  CAS  PubMed  Google Scholar 

  11. Marks HG, Scavina MT, Kolodny EH, Palmieri M, Childs J (1997) Krabbe’s disease presenting as a peripheral neuropathy. Muscle Nerve 20:1024–1028

    Article  CAS  PubMed  Google Scholar 

  12. Shah S, Freeman E, Wolf V, Murthy S, Lotze T (2012) Intracranial optic nerve enlargement in infantile Krabbe disease. Neurology 78:e126

    Article  CAS  PubMed  Google Scholar 

  13. Vasconcellos E, Smith M (1998) MRI nerve root enhancement in Krabbe disease. Pediatr Neurol 19:151–152

    Article  CAS  PubMed  Google Scholar 

  14. Morana G, Biancheri R, Dirocco M et al (2009) Enhancing cranial nerves and cauda equina: an emerging magnetic resonance imaging pattern in metachromatic leukodystrophy and krabbe disease. Neuropediatrics 40:291–294

    Article  CAS  PubMed  Google Scholar 

  15. Escolar ML, Poe MD, Provenzale JM et al (2005) Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. New Eng J Med 352:2069–2081

    Article  CAS  PubMed  Google Scholar 

  16. Duffner PK, Caggana M, Orsini JJ et al (2009) Newborn screening for Krabbe disease: the New York State model. Pediatr Neurol 40:245–253

    Article  PubMed  Google Scholar 

  17. Marks HG, Scavina MT, Kolodny EH, Palmieri M, Childs J (1997) Krabbe's disease presenting as a peripheral neuropathy. Muscle Nerve 20:1024–1028

  18. Korn-Lubetzki I, Dor-Wollman T, Soffer D, Raas-Rothschild A, Hurvitz H, Nevo Y (2003) Early peripheral nervous system manifestations of infantile Krabbe disease. Pediatr Neurol 28:115–118

    Article  PubMed  Google Scholar 

  19. Kale HA, Sklar E (2007) Magnetic resonance imaging findings in chronic inflammatory demyelinating polyneuropathy with intracranial findings and enhancing, thickened cranial and spinal nerves. Australas Radiol 51:B21–B24

    Article  PubMed  Google Scholar 

  20. Haberlandt E, Scholl-Burgi S, Neuberger J et al (2009) Peripheral neuropathy as the sole initial finding in three children with infantile metachromatic leukodystrophy. Eur J Paediatr Neurol 13:257–260

    Article  CAS  PubMed  Google Scholar 

  21. Webster HD (1962) Schwann cell alterations in metachromatic leukodystrophy: preliminary phase and electron microscopic observations. J Neuropathol Exp Neurol 21:534–554

    Article  CAS  PubMed  Google Scholar 

  22. Bindu PS, Mahadevan A, Taly AB, Christopher R, Gayathri N, Shankar SK (2005) Peripheral neuropathy in metachromatic leucodystrophy. A study of 40 cases from south India. J Neurol Neurosurg Psychiatry 76:1698–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martinez AC, Ferrer MT, Fueyo E, Galdos L (1975) Peripheral neuropathy detected on electrophysiological study as first manifestation of metachromatic leucodystrophy in infancy. J Neurol Neurosurg Psychiatry 38:169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siddiqi ZA, Sanders DB, Massey JM (2006) Peripheral neuropathy in Krabbe disease. Neurology 67:268–272

    Article  PubMed  Google Scholar 

  25. Ichioka T, Kishimoto Y, Brennan S, Santos GW, Yeager AM (1987) Hematopoietic cell transplantation in murine globoid cell leukodystrophy (the twitcher mouse): effects on levels of galactosylceramidase, psychosine, and galactocerebrosides. Proc Natl Acad Sci U S A 84:4259–4263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toyoshima E, Yeager AM, Brennan S, Santos GW, Moser HW, Mayer RF (1986) Nerve conduction studies in the Twitcher mouse (murine globoid cell leukodystrophy). J Neurol Sci 74:307–318

    Article  CAS  PubMed  Google Scholar 

  27. Hofling AA, Kim JH, Fantz CR, Sands MS, Song SK (2009) Diffusion tensor imaging detects axonal injury and demyelination in the spinal cord and cranial nerves of a murine model of globoid cell leukodystrophy. NMR Biomed 22:1100–1106

    PubMed  PubMed Central  Google Scholar 

  28. Morisaki S, Kawai Y, Umeda M et al (2011) In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging. JMRI J Mag Res Imaging 33:535–542

    Article  Google Scholar 

  29. Cauley KA, Filippi CG (2013) Diffusion-tensor imaging of small nerve bundles: cranial nerves, peripheral nerves, distal spinal cord, and lumbar nerve roots--clinical applications. AJR Am J Roentgenol 201:W326–W335

    Article  PubMed  Google Scholar 

  30. Escolar ML, Poe MD, Smith JK et al (2009) Diffusion tensor imaging detects abnormalities in the corticospinal tracts of neonates with infantile Krabbe disease. AJNR Am J Neuroradiol 30:1017–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McGraw P, Liang L, Escolar M, Mukundan S, Kurtzberg J, Provenzale JM (2005) Krabbe disease treated with hematopoietic stem cell transplantation: serial assessment of anisotropy measurements--initial experience. Radiology 236:221–230

    Article  PubMed  Google Scholar 

  32. Given CA, Santos CC, Durden DD (2001) Intracranial and spinal MR imaging findings associated with Krabbe’s disease: case report. AJNR 22:1782–1785

    PubMed  Google Scholar 

  33. Beslow LA, Schwartz ES, Bӧnneman CG (2008) Thickening and enhancement of multiple cranial nerves in conjunction with cystic white matter lesions in early infantile Krabbe disease. Pediatr Radiol 38:694–696

    Article  PubMed  Google Scholar 

  34. Ganesan K, Desai S, Hedge A (2010) Multiple cranial nerve enhancement: uncommon imaging finding in early infantile Krabbe’s disease. J Neuroimaging 20:195–197

    Article  PubMed  Google Scholar 

  35. Bernal OG, Lenn N (2000) Multiple cranial nerve enhancement in early infantile Krabbe’s disease. Neurology 54:2348–2349

    Article  CAS  PubMed  Google Scholar 

  36. Escolar ML, Poe MD, Martin HR, Kurtzberg J (2006) A staging system for infantile Krabbe disease to predict outcome after unrelated umbilical cord blood transplantation. Pediatrics 118(3):879–889

    Article  Google Scholar 

  37. Baumer P, Dombert T, Staub F et al (2011) Ulnar neuropathy at the elbow: MR neurography--nerve T2 signal increase and caliber. Radiology 260:199–206

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The scientific guarantor of this publication is Dr. Maria Escolar. The authors of this manuscript declare no relationships with any companies whose products or services may be related to the subject matter of the article. This study has received funding by NIH/NINDS R01 NS061965-01, the DANA foundation, and The Legacy of Angels Foundation. Michele D Poe, PhD kindly provided statistical advice for this manuscript. Institutional Review Board approval was obtained. Written informed consent was obtained from all subjects (patients) in this study. This is a retrospective observational study performed at one institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria L. Escolar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, M., Zuccoli, G., Panigrahy, A. et al. Thickening of the cauda equina roots: a common finding in Krabbe disease. Eur Radiol 26, 3377–3382 (2016). https://doi.org/10.1007/s00330-016-4233-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-016-4233-6

Keywords

Navigation