Skip to main content
Log in

Springtime dynamics, productivity and activity of prokaryotes in two Arctic fjords

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

In the Kongsfjorden–Krossfjorden system (Spitsbergen), increasing temperatures enhance glacier melting and concomitant intrusion of freshwater. These altered conditions affect the timing, intensity, and composition of the phytoplankton spring bloom in Kongsfjorden; yet, the effects on prokaryotes (bacteria and archaea) are not well understood. The aim of this study was to examine springtime prokaryote communities in both fjords as a function of hydrographic and phytoplankton variability. Prokaryote community composition was studied in two consecutive years by molecular fingerprinting of the 16S rRNA gene. In addition, we measured bacterial abundance, productivity (3H-Leucine uptake), and single-cell activity using catalyzed reporter deposition fluorescence in situ hybridization combined with microautoradiography. Differences in bacterial and archaeal communities were found between Kongsfjorden and Krossfjorden. Furthermore, an increase in productivity, abundance, and proportion of active bacterial cells was observed during the course of spring. Bacteroidetes were the most abundant bacterial group among the assessed taxa in both Kongsfjorden and Krossfjorden. Multivariate analysis of the microbial community fingerprints revealed a strong temporal shaping of both the bacterial and archaeal communities in addition to a spatial separation between the two fjords. A significant part of the observed bacterial variation could be explained by cyanobacterial biomass, as deduced from pigment analysis, and by phosphate concentration. Archaea were mainly controlled by abiotic factors. We speculate that the bacterial response to hydrographic changes and glacier meltwater is mediated through shifts in phytoplankton abundance and composition, whereas archaea are directly influenced by abiotic environmental variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso-Sáez L, Sánchez O, Gasol JM, Balagué V, Pedrós-Alió C (2008) Winter-to-summer changes in the composition and single-cell activity of near surface Arctic prokaryotes. Environ Microbiol 10:2444–2454

    Article  PubMed  Google Scholar 

  • Alonso-Sáez L, Waller AS, Mende DR, Bakker K, Farnelid H, Yager PL et al (2012) Role for urea in nitrification by polar marine Archaea. Proc Natl Acad Sci USA 109:17989–17994

    Article  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amin SA, Parker MS, Armbrust EV (2012) Interactions between diatoms and bacteria. Microbiol Mol Biol Rev 76:667–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnosti C (2008) Functional differences between Arctic seawater and sedimentary microbial communities: contrasts in microbial hydrolysis of complex substrates. FEMS Microbiol Ecol 66:343–351

    Article  CAS  PubMed  Google Scholar 

  • Bano N, Hollibaugh JT (2002) Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68:505–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmeyer R, Knittel K, Jürgens J, Weyland H, Amann RI, Helmke E (2003) Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl Environ Microbiol 69:6610–6619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmeyer R, Glöckner F-O, Helmke E, Amann R (2004) Predominance of betaproteobacteria in summer melt pools on Arctic pack ice. Limnol Oceanogr 49:1013–1021

    Article  Google Scholar 

  • Collins RE, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic Winter. Environ Microbiol 12:1828–1841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comeau AM, Li WKW, Tremblay J, Carmack EC, Lovejoy C (2011) Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One 6:e27492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cottier F, Tverberg V, Inall M, Svendsen H, Nilsen F, Griffiths C (2005) Water mass modification in an Arctic fjord through cross-shelf exchange: the seasonal hydrography of Kongsfjorden, Svalbard. J Geophys Res C 110:1–18

    Article  Google Scholar 

  • Coupel P, Jin HY, Joo M, Horner R, Bouvet HA, Sicre M et al (2012) Phytoplankton distribution in unusually low sea ice cover over the Pacific Arctic. Biogeosciences 9:4835–4850

    Article  CAS  Google Scholar 

  • Daims H, Bruhl A, Amann R, Schleifer K, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  PubMed  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. P Natl Acad Sci USA 106:12788–12793

    Article  CAS  Google Scholar 

  • De Corte D, Sintes E, Yokokawa T, Herndl GJ (2011) Changes in viral and bacterial communities during the ice-melting season in the coastal Arctic (Kongsfjorden, Ny-Alesund). Environ Microbiol 13:1827–1841

    Article  PubMed  Google Scholar 

  • De Corte D, Sintes E, Yokokawa T, Herndl GJ (2013) Comparison between MICRO-CARD-FISH and 16S rRNA gene clone libraries to assess the active versus total bacterial community in the coastal Arctic. Environ Microbiol Rep 5:272–281

    Article  PubMed  Google Scholar 

  • Duarte CM, Agustí S, Wassmann P, Arrieta JM, Alcaraz M, Coello A, Marbà N et al (2012) Tipping elements in the Arctic marine ecosystem. Ambio 41:44–55

    Article  PubMed  PubMed Central  Google Scholar 

  • Eilers H, Pernthaler J, Glockner F, Amann R (2000) Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl Environ Microbiol 66:3044–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eilers H, Pernthaler J, Peplies J, Glockner F, Gerdts G, Amann R (2001) Isolation of novel pelagic bacteria from the German bight and their seasonal contributions to surface picoplankton. Appl Environ Microbiol 67:5134–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elifantz H, Dittel AI, Cottrell MT, Kirchman DL (2007) Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 50:39–49

    Article  Google Scholar 

  • Galand PE, Lovejoy C, Pouliot J (2008) Microbial community diversity and heterotrophic production in a coastal Arctic ecosystem: a stamukhi lake and its source waters. Limnol Oceanogr 53:813–823

    Article  Google Scholar 

  • Garneau M, Vincent WF, Alonso-Sáez L, Gratton Y, Lovejoy C (2005) Prokaryotic community structure and heterotrophic production in a river-influences coastal arctic ecosystem. Aquat Microb Ecol 42:27–40

    Article  Google Scholar 

  • Glöckner FO, Fuchs BM, Amann RI (1999) Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726

    PubMed  PubMed Central  Google Scholar 

  • Gonzalez J, Simo R, Massana R, Covert J, Casamayor E, Pedrós-Alió C et al (2000) Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenacre M (2007) Correspondence analysis in practice, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H, Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8:475–488

    Article  CAS  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeont Electr 4:38–47

    Google Scholar 

  • Hegseth EN, Tverberg V (2013) Effect of Atlantic water inflow on timing of the phytoplankton spring bloom in a high Arctic fjord (Kongsfjorden, Svalbard). J Marine Syst 113–114:94–105

    Article  Google Scholar 

  • Heuer H, Krsek M, Baker P, Smalla K, Wellington E (1997) Analysis of Actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hodal H, Falk-Peterson S, Hop H, Kristiansen S, Reigstad M (2012) Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol 35:191–203

    Article  Google Scholar 

  • Hop H, Pearson T, Hegseth EN, Kovacs KM, Wiencke C, Kwasniewski S et al (2002) The marine ecosystem of Kongsfjorden, Svalbard. Polar Res 21:167–208

    Article  Google Scholar 

  • Keck A, Wiktor J, Hapter R, Nilsen R (1999) Phytoplankton assemblages related to physical gradients in an arctic, glacier-fed fjord in summer. ICES J Mar Sci 56:203–214

    Article  Google Scholar 

  • Kellogg C, Deming JW (2009) Comparison of free-living, suspended particle and aggregate-associated bacterial and archaeal communities in the Laptev Sea. Aquat Microb Ecol 57:1–18

    Article  Google Scholar 

  • Kirchman DL (2002) The ecology of CytophagaFlavobacteria in aquatic environments. FEMS Microbiol Ecol 39:91–100

    CAS  PubMed  Google Scholar 

  • Kirchman DL (2008) New light on an important microbe in the ocean. P Natl Acad Sci USA 105:8487–8488

    Article  CAS  Google Scholar 

  • Kirchman DL, Ducklow HW (1993) Estimating conversion factors for the thymidine and leucine methods for measuring bacterial production. In: Kemp PF, Cole JJ, Sherr BF, Sherr BE (eds) Handbook of methods in aquatic microbial ecology. CRC Press, New York, pp 513–519

    Google Scholar 

  • Kirchman DL, Dittel A, Malmstrom R, Cottrell M (2005) Biogeography of major bacterial groups in the Delaware Estuary. Limnol Oceanogr 50:1697–1706

    Article  CAS  Google Scholar 

  • Kirchman DL, Elifantz H, Dittel AI, Malmstrom RR, Cottrell MT (2007) Standing stocks and activity of Archaea and Bacteria in the Western Arctic Ocean. Limnol Oceanogr 52:495–507

    Article  CAS  Google Scholar 

  • Lee N, Nielsen P, Andreasen K, Juretschko S, Nielsen J, Schleifer K et al (1999) Combination of fluorescent in situ hybridization and microautoradiography: a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol 65:1289–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leu E, Falk-Peterson S, Kwasniewski S, Wulff A, Edvardson K, Hessen DO (2006) Fatty acid dynamics during the spring bloom in a high Arctic fjord: importanc of abiotic factors versus community changes. Can J Fish Aquat Sci 63:2760–2779

    Article  CAS  Google Scholar 

  • Li WKW, McLaughlin FA, Lovejoy C, Carmack EC (2009) Smallest algae thrive as the Arctic Ocean freshens. Science 326:539

    Article  CAS  PubMed  Google Scholar 

  • Malmstrom RR, Straza TRA, Cotrell MT, Kirchman DL (2007) Diversity, abundance, and biomass production of bacterial groups in the western Arctic Ocean. Aquat Microb Ecol 47:45–55

    Article  CAS  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer K (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer K (1996) Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga–flavobacter–bacteroides in the natural environment. Microbiology 142:1097–1106

    Article  CAS  PubMed  Google Scholar 

  • Moline M, Claustre H, Frazer T, Schofield O, Vernet M (2004) Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Global Change Biol 10:1973–1980

    Article  Google Scholar 

  • Morris R, Rappe M, Connon S, Vergin K, Siebold W, Carlson C et al (2002) SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420:806–810

    Article  CAS  PubMed  Google Scholar 

  • Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K et al (1998) Seasonal and spatial variability of bacterial and Archaeal assemblages in coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol 64:2585–2595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicol GW, Glover LA, Prosser JI (2003) Molecular analysis of methanogenic archaeal communities in managed and natural upland pasture soils. Glob Change Biol 9:1451–1457

    Article  Google Scholar 

  • Oksanen J, Blanchet GF, Kindt R, Legendre P, Minchin PR, O’Hara RB et al. (2014) Vegan: community ecology package. R package version 2.2-0

  • Olsen MS, Callaghan TV, Reist JD, Reiersen LO, Dahl-Jensen D, Granskog MA et al (2011) The changing arctic cryosphere and likely consequences: an overview. Special report: Arctic cryosphere: changes and impacts. Ambio 40(1):111–118

  • Ortega-Retuerta E, Reche E, Pulido-Villena E, Agustí S, Duarte CM (2008) Exploring the relationship between active bacterioplankton and phytoplankton in the Southern Ocean. Aquat Microb Ecol 52:99–106

    Article  Google Scholar 

  • Osterholz H, Dittmar T, Niggemann J (2014) Molecular evidence for rapid dissolved organic matter turnover in Arctic fjords. Mar Chem 160:1–10

    Article  CAS  Google Scholar 

  • Ovreas L, Forney L, Daae F, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002a) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pernthaler A, Preston C, Pernthaler J, DeLong E, Amann R (2002b) Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine bacteria and archaea. Appl Environ Microbiol 68:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piquet AM-T, Bolhuis H, Davidson AT, Thomson PG, Buma AGJ (2008) Diversity and dynamics of Antarctic marine microbial eukaryotes under manipulated environmental UV radiation. FEMS Microbiol Ecol 66:352–366

    Article  CAS  PubMed  Google Scholar 

  • Piquet AM-T, Scheepens JF, Bolhuis H, Wiencke C, Buma AGJ (2010) Variability of protistan and bacterial communities in two Arctic fjords (Spitsbergen). Polar Biol 33:1521–1536

    Article  Google Scholar 

  • Piquet AM-T, van de Poll WH, Visser RJW, Wiencke C, Bolhuis H, Buma AGJ (2014) Springtime phytoplankton dynamics in Arctic Krossfjorden and Kongsfjorden (Spitsbergen) as a function of glacier proximity. Biogeosciences 11:2263–2279

    Article  Google Scholar 

  • Ravenschlag K, Sahm K, Pernthaler J, Amann R (1999) High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol 65:3982–3989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riemann L, Steward G, Azam F (2000) Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol 66:578–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokkan Iversen K, Seuthe L (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol 34:731–749

    Article  Google Scholar 

  • Sala MM, Terrado R, Lovejoy C, Unrein F, Pedrós-Alió C (2008) Metabolic diversity of heterotrophic bacterioplankton over winter and spring in the coastal Arctic Ocean. Environ Microbiol 10:942–949

    Article  CAS  PubMed  Google Scholar 

  • Seuthe L, Topper B, Reigstad M, Thyrhaug R, Vaquer-Sunyer R (2011) Microbial communities and processes in ice-covered Arctic waters of the northwestern Fram Strait (75 to 80 degrees N) during the vernal pre-bloom phase. Aquat Microb Ecol 64:253–266

    Article  Google Scholar 

  • Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine Bacteria. Mar Ecol Prog Ser 51:201–213

    Article  CAS  Google Scholar 

  • Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114

    Google Scholar 

  • Srinivas TNR, Nageswara Rao SSS, Vishnu Vardhan Reddy P, Pratibha MS, Sailaja B, Kavya B et al (2009) Bacterial diversity and bioprospecting for cold-active lipases, amylases and proteases, from culturable bacteria of Kongsfjorden and Ny-Ålesund, Svalbard, Arctic. Curr Microbiol 59:537–547

    Article  CAS  PubMed  Google Scholar 

  • Svendsen H, Beszczynska-Møller A, Hagen JO, Lefauconnier B, Tverberg V, Gerland S et al (2002) The physical environment of the Kongsfjorden–Krossfjorden, an arctic fjord system in Svalbard. Polar Res 21:133–166

    Article  Google Scholar 

  • Tian F, Yu Y, Chen B, Li H, Yao Y-F, Guo X-K (2009) Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biol 32:93–103

    Article  Google Scholar 

  • Teira E, Reinthaler T, Pernthaler A, Pernthaler J, Herndl GJ (2004) Combining catalyzed reporter deposition-fluorescence in situ hybridization and microautoradiography to detect substrate utilization by bacteria and archaea in the deep ocean. Appl Environ Microbiol 70:4411–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Wielen P, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L et al (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123

    Article  PubMed  Google Scholar 

  • Vincent WF, Callaghan TV, Dahl-Jensen D, Johansson M, Kovacs KM, Michel C, Prowse T, Reist JD, Sharp M (2011) Ecological implications of changes in the Arctic cryosphere. Ambio 40:87–99

    Article  Google Scholar 

  • Zeng Y, Zheng T, Li H (2009) Community composition of the marine bacterioplankton in Kongsfjorden (Spitsbergen) as revealed by 16S rRNA gene analysis. Polar Biol 32:1447–1460

    Article  Google Scholar 

Download references

Acknowledgments

This research was financed by NWO, as part of the IPY–PAME framework. Fieldwork at Koldeway station was supported and financed by the AWI. We thank A. K. Olstad, captain of the RV Teisten, and E. Austerheim, Kings Bay laboratory manager, for the wonderful collaboration. We are grateful to R. J. W. Visser for collecting the 2007 samples and running phytoplankton pigment analyses. Nutrients were analyzed at the NIOZ by J. van Ooijen. We also acknowledge Michael Greenacre (Universitat Pompeu Fabra, Barcelona, Spain) for his valuable help with the ordination and statistical analysis. We also like to thank the anonymous referees for their valuable suggestions and improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bolhuis.

Additional information

This article belongs to the special issue on the “Kongsfjorden ecosystem—new views after more than a decade of research,” coordinated by Christian Wiencke and Haakon Hop.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piquet, A.MT., Maat, D.S., Confurius-Guns, V. et al. Springtime dynamics, productivity and activity of prokaryotes in two Arctic fjords. Polar Biol 39, 1749–1763 (2016). https://doi.org/10.1007/s00300-015-1866-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-015-1866-x

Keywords

Navigation