Skip to main content
Log in

Evidence for a pan-Arctic sea-ice diatom diet in Strongylocentrotus spp

  • Short Note
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

The Arctic marine food web is based on organic matter produced by both phytoplankton and sea-ice algae. With the decline of Arctic sea ice, the sustained availability of organic carbon of sea-ice origin is unclear. Recently, the detection of the sea-ice diatom biomarker IP25 in a range of Arctic benthic macrofauna indicated that this is a highly suitable biomarker for the identification of organic carbon derived from sea-ice primary production in Arctic food webs. However, the data presented previously were restricted to a single geographical region in the Canadian Arctic. Here, we show that IP25 is present in sea urchins of the genus Strongylocentrotus collected from ten locations with seasonal sea-ice cover from the Canadian Archipelago, Greenland and Spitsbergen. In contrast, IP25 was not found in specimens of Echinus esculentus collected from the southwest UK, where sea ice is absent. Our findings provide evidence that the presence of IP25 in macrobenthic organisms can be used across different Arctic regions as a versatile indicator of a diet containing carbon of sea-ice origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Arctic Climate Impact Assessment (ACIA) (2004) Impacts of a warming Arctic: Arctic climate impact and assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Basedow SL, Eiane K, Tverberg V, Spindler M (2004) Advection of zooplankton in an Arctic fjord (Kongsfjorden, Svalbard). Estuar Coast Shelf Sci 60:113–124

    Article  Google Scholar 

  • Belt ST, Massé G, Rowland SJ, Poulin M, Michel C, LeBlanc B (2007) A novel chemical fossil of palaeo sea ice: IP25. Org Geochem 38:16–27

    Article  CAS  Google Scholar 

  • Belt ST, Vare LL, Massé G, Manners H, Price J, MacLachlan S, Andrews JT, Schmidt S (2010) Striking similarities in temporal changes to seasonal sea ice conditions across the central Canadian Arctic Archipelago during the last 7,000 years. Quat Sci Rev 2:3489–3504

    Article  Google Scholar 

  • Bluhm B, Piepenburg D, von Juterzenka K (1998) Distribution, standing stock, growth, mortality and production of Strongylocentrotus pallidus (Echinodermata: Echinoidea) in the northern Barents Sea. Polar Biol 20:325–334

    Article  Google Scholar 

  • Brown TA, Belt ST (2012) Identification of the sea ice diatom biomarker IP25 in Arctic benthic macrofauna: direct evidence for a sea ice diatom diet in Arctic heterotrophs. Polar Biol 35:131–137

    Article  Google Scholar 

  • Brown TA, Belt ST, Philippe B, Mundy CJ, Massé G, Poulin M, Gosselin M (2011) Temporal and vertical variations of lipid biomarkers during a bottom ice diatom bloom in the Canadian Beaufort Sea: further evidence for the use of the IP25 biomarker as a proxy for spring Arctic sea ice. Polar Biol 34:1857–1868

    Article  Google Scholar 

  • Budge S, Wooller M, Springer A, Iverson S, McRoy C, Divoky G (2008) Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia 157:117–129

    Article  PubMed  CAS  Google Scholar 

  • Deser C, Holland M, Reverdin G, Timlin M (2002) Decadal variations in Labrador Sea ice cover and North Atlantic sea surface temperatures. J Geophys Res 107:3035

    Article  Google Scholar 

  • Falk-Petersen S, Haug T, Hop H, Nilssen KT, Wold A (2009) Transfer of lipids from plankton to blubber of harp and hooded seals off East Greenland. Deep-Sea Res Part II 56:2080–2086

    Article  CAS  Google Scholar 

  • Forest A, Tremblay J-É, Gratton Y, Martin J, Gagnon J, Darnis G, Sampei M, Fortier L, Ardyna M, Gosselin M, Hattori H, Nguyen D, Maranger R, Vaqué D, Marrasé C, Pedrós-Alió C, Sallon A, Michel C, Kellogg C, Deming J, Shadwick E, Thomas H, Link H, Archambault P, Piepenburg D (2011) Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog Oceanogr. doi:10.1016/j.pocean.2011.05.002

    Google Scholar 

  • Gagnon J-M, Gilkinson KD (1994) Discrimination and distribution of the sea urchins Strongylocentrotus droebachiensis (O.F. Müller) and S. pallidus (G.O. Sars) in the North-west Atlantic. Sarsia 79:1–11

    Google Scholar 

  • Gerland S, Haas C, Nicolaus M, Winther J-G (2004) Seasonal development of structure and optical surface properties of fast ice in Kongsfjorden, Svalbard. Ber Polarforsch 492:26–34

    Google Scholar 

  • Gilkinson KD, Gagnon J-M, Schneider DC (1988) The sea urchin Strongylocentrotus pallidus (G.O. Sars) on the Grand Bank of Newfoundland. In: Burke RD, Mladenov PV, Lampert P (eds) Echinoderm biology. Balkema, Rotterdam, pp 467–473

    Google Scholar 

  • Gosselin M, Levasseur M, Wheeler PA, Horner RA, Booth BC (1997) New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Res Part II 44:1623–1644

    Article  CAS  Google Scholar 

  • Hird SJ, Rowland SJ (1995) An investigation of the sources and seasonal variations of highly branched isoprenoid hydrocarbons in intertidal sediments of the Tamar Estuary, UK. Mar Environ Res 40:423–437

    Article  CAS  Google Scholar 

  • Hop H, Falk-Petersen S, Svendsen H, Kwasniewski S, Pavlov V, Pavlova O, Søreide JE (2006) Physical and biological characteristics of the pelagic system across Fram Strait to Kongsfjorden. Prog Oceanogr 71:182–231

    Article  Google Scholar 

  • Irwin BD (1990) Primary production of ice algae on a seasonally-ice-covered, continental shelf. Polar Biol 10:247–254

    Article  Google Scholar 

  • Jensen M (1974) The Strongylocentrotidae (Echinoidea), a morphologic and systematic study. Sarsia 57:113–148

    Google Scholar 

  • Lavoie RA, Hebert CE, Rail J-F, Braune BM, Yumvihoze E, Hill LG, Lean DRS (2010) Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Sci Total Environ 408:5529–5539

    Article  PubMed  CAS  Google Scholar 

  • Maus S, Müller S, Büttner J, Brütsch S, Huthwelker T, Schwikowski M, Enzmann F, Vähätolo A (2011) Ion fractionation in young sea ice from Kongsfjorden, Svalbard. Ann Glaciol 52:301–310

    Article  Google Scholar 

  • McMahon K, Ambrose W Jr, Johnson B, Sun M, Lopez G, Clough L, Carroll M (2006) Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Mar Ecol Prog Ser 310:1–14

    Article  Google Scholar 

  • Müller J, Massé G, Stein R, Belt ST (2009) Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat Geosci 2:772–776

    Article  Google Scholar 

  • Müller J, Wagner A, Fahl K, Stein R, Prange M, Lohmann G (2011) Towards quantitative sea ice reconstructions in the northern North Atlantic: a combined biomarker and numerical modelling approach. Earth Planet Sc Lett 306:137–148

    Article  Google Scholar 

  • Mundy CJ, Gosselin M, Ehn J, Gratton Y, Rossnagel A, Barber DG, Martin J, Tremblay J-E, Palmer M, Arrigo KR, Darnis G, Fortier L, Else B, Papakyriakou T (2009) Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys Res Lett 36:L17601

    Article  Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology 7th edn. Brooks/Cole Thompson Learning, Belmont

    Google Scholar 

  • Søreide JE, Hop H, Carroll ML, Falk-Petersen S, Hegseth EN (2006) Seasonal food web structures and sympagic-pelagic coupling in the European Arctic revealed by stable isotopes and a two-source food web model. Prog Oceanogr 71:59–87

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501

    Article  Google Scholar 

  • Sun M-Y, Clough LM, Carroll ML, Dai J, Ambrose WG Jr, Lopez GR (2009) Different responses of two common Arctic macrobenthic species (Macoma balthica and Monoporeia affinis) to phytoplankton and ice algae: will climate change impacts be species specific? J Exp Mar Biol Ecol 376:110–121

    Article  Google Scholar 

  • Vare LL, Massé G, Gregory TR, Smart CW, Belt ST (2009) Sea ice variations in the central Canadian Arctic Archipelago during the Holocene. Quat Sci Rev 28:1354–1366

    Article  Google Scholar 

  • Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:2–6

    CAS  Google Scholar 

  • Wassmann P, Duarte CM, Agustí S, Sejr MK (2011) Footprints of climate change in the Arctic marine ecosystem. Glob Change Biol 17:1235–1249

    Article  Google Scholar 

  • Willis K, Cottier F, Kwasniewski S, Wold A, Falk-Petersen S (2006) The influence of advection on zooplankton community composition in an Arctic fjord (Kongsfjorden, Svalbard). J Mar Syst 61:9–54

    Article  Google Scholar 

  • Willis K, Cottier F, Kwaśniewski S (2008) Impact of warm water advection on the winter zooplankton community in an Arctic fjord. Polar Biol 31:475–481

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Natural Environment Research Council (NERC, UK) (NE/D013216/1) and the Seale-Hayne Educational Trust for funding part of this work. Partial operating funds for the CCGS Amundsen were provided by the International Joint Ventures Fund of the Canada Foundation for Innovation. We would like to thank Ms. V. Roy and the Canadian Healthy Oceans Network (CHONe), ArcticNet and Circumpolar Flaw Lead System study (CFL) and the CCGS Amundsen officers and crew for supplying Strongylocentrotus sp. urchins from the Canadian Arctic as well as Dr H. Findlay at Plymouth Marine Laboratories for supplying Strongylocentrotus sp. urchins from Kongsfjorden obtained as part of the European Project on Ocean Acidification (EPOCA) with received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under grant agreement n° 211384. We also thank Paul Renaud and an anonymous reviewer for their helpful suggestions on improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, T.A., Belt, S.T. & Piepenburg, D. Evidence for a pan-Arctic sea-ice diatom diet in Strongylocentrotus spp. Polar Biol 35, 1281–1287 (2012). https://doi.org/10.1007/s00300-012-1164-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-012-1164-9

Keywords

Navigation