Skip to main content
Log in

Methods for genetic transformation in Dendrobium

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

The genetic transformation of Dendrobium orchids will allow for the introduction of novel colours, altered architecture and valuable traits such as abiotic and biotic stress tolerance.

Abstract

The orchid genus Dendrobium contains species that have both ornamental value and medicinal importance. There is thus interest in producing cultivars that have increased resistance to pests, novel horticultural characteristics such as novel flower colours, improved productivity, longer flower spikes, or longer post-harvest shelf-life. Tissue culture is used to establish clonal plants while in vitro flowering allows for the production of flowers or floral parts within a sterile environment, expanding the selection of explants that can be used for tissue culture or genetic transformation. The latter is potentially the most effective, rapid and practical way to introduce new agronomic traits into Dendrobium. Most (69.4 %) Dendrobium genetic transformation studies have used particle bombardment (biolistics) while 64 % have employed some form of Agrobacterium-mediated transformation. A singe study has explored ovary injection, but no studies exist on floral dip transformation. While most of these studies have involved the use of selector or reporter genes, there are now a handful of studies that have introduced genes for horticulturally important traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atichart P, Bunnag S, Theerakulpisut P (2007) Agrobacterium-mediated transformation of Dendrobium secundum (Bl.) Lindl. with antisense ACC oxidase. Asian J Plant Sci 6:1065–1071

    Article  CAS  Google Scholar 

  • Breckle SW (2009) Is sustainable agriculture with seawater irrigation realistic? In: Ashraf M, Ozturk M, Athar HR (Eds) Salinity and water stress: tasks for vegetation science, vol 44, pp 187–196. Springer Science + Business Media B.V.

  • Bunnag S, Duangsee K (2009) Transformation of Dendrobium primulinum Lindl. with antisense ACC oxidase. Acta Hortic 829:283–288

    Article  CAS  Google Scholar 

  • Bunnag S, Pilahome W (2012) Agrobacterium-mediated transformation of Dendrobium chrysotoxum Lindl. Afr J Biotechnol 11:2472–2476

    CAS  Google Scholar 

  • Cao Y, Niimi Y, Hu SL (2006) Meropenem as an alternative antibiotic agent for suppression of Agrobacterium in genetic transformation of orchid. Agric Sci China 5:839–846

    Article  CAS  Google Scholar 

  • Cao Y, Hu SL, Sun X, Lu XQ, Han Y (2007) Study on Agrobacterium mediated transformation of protocorm like bodies of the hybrid orchid of Dendrobium x Phalaenopsis. J Fujian For Sci Technol 34:27–31 (in Chinese with English abstract)

    Google Scholar 

  • Cardoso JC, Ono EO, Rodrigues JD (2010) Gibberellic acid and water regime in the flowering induction of Brassocattleya and Cattleya hybrid orchid. Hortic Bras 28:395–398

    Article  Google Scholar 

  • Chai D, Lee SM, Ng JH, Yu H (2007) l-Methionine sulfoximine as a novel selection agent for genetic transformation of orchids. J Biotechnol 131:466–472

    Article  CAS  PubMed  Google Scholar 

  • Chandler S (2013) Genetically engineered ornamental plants: regulatory hurdles to commercialization. ISB new report. http://www.isb.vt.edu/news/2013/Aug/Chandler.pdf. Last accessed 24 Nov 2015

  • Chandler SF, Sanchez C (2012) Genetic modification; the development of transgenic ornamental plant varieties. Plant Biotechnol J 10:891–903

    Article  PubMed  Google Scholar 

  • Chang C, Chen YC, Hsu YH, Wu JT, Hu CC, Chang WC, Lin NS (2005) Transgenic resistance to Cymbidium mosaic virus in Dendrobium expressing the viral capsid protein gene. Transgen Res 14:41–46

    Article  Google Scholar 

  • Chen ZL, Duan J, Zeng SJ, Liang CY, Ye XL (2007) Agrobacterium-mediated transformation of Dendrobium orchid by targeting protocorms. Acta Sci Nat Univ Sunyatseni 46:86–90 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Chen YC, Yang YC, Chen YH, Chao YP, Chang LZ, Chen YW (2010) Modification of Phalaenopsis metabolism by genetic engineering. Acta Hortic 878:473–480

    Article  CAS  Google Scholar 

  • Chia TF, Chan YS, Chua NH (1994) The firefly luciferase gene as a non-invasive reporter for Dendrobium transformation. Plant J 6:441–446

    Article  CAS  Google Scholar 

  • Chia TF, Lim AYH, Luan Y, Ng I (2001) Transgenic Dendrobium (Orchid). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 48., Transgenic Crops III. Springer, Berlin, pp 95–106

    Google Scholar 

  • DeBlock M, Botterman J, Vandewille M, Dockx J, Thoen C, Gosselé V, Rao Movva N, Thompson C, Van Montagu M, Leemens J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518

    CAS  Google Scholar 

  • Ding L, Wang Y, Yu H (2013) Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Plant Cell Physiol 54:595–608

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Lai ZX (2013) Selection and identification of resistant PLBs and transgenic plants mediated by Agrobacterium tumefaciens with antisense ACS (Acetyl-CoA synthetase) gene in Dendrobium spp. Acta Bot Boreal Occident Sin 33:247–253 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Feng S, Zhao H, Lu J, Liu J, Shen B, Wang H (2013) Preliminary genetic linkage maps of Chinese herb Dendrobium nobile and D. moliniforme. J Genet 92(2):205–2012

    Article  CAS  PubMed  Google Scholar 

  • Fu CF, Hew CS (1982) Crassulacean acid metabolism in orchids under water stress. Bot Gaz 143:294–297

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Goh CJ, Kluge M (1989) Gas exchange and water relations in epyphitic orchids. In: Lüttge U (ed) Vascular plants as epiphytes, vol 76. Springer, Berlin, pp 139–166

    Chapter  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unravelling the signaling networks. Front Plant Sci 5:1–10

    Article  Google Scholar 

  • Governent of Western Australia (2011) Guidelines for the non-potable uses of recycled water in Western Australia. Department of Health, Western Australia. http://www.public.health.wa.gov.au/cproot/2280/2/Guidelines%20for%20the%20Non-potable%20Uses%20of%20Recycled%20Water%20in%20WA_140620.pdf. Last accessed 24 Nov 2015

  • Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742–752

    Article  CAS  PubMed  Google Scholar 

  • Hee KH, Yeoh HH, Loh CS (2009) In vitro flowering and in vitro pollination: methods that will benefit the orchid industry. In: Proceedings of Nagoya International Orchid Congress, 2009, pp 20–24, Nagoya, Japan

  • Hossain MM, Kant R, Van PT, Winarto B, Zeng SJ, Teixeira da Silva JA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32:69–139

    Article  CAS  Google Scholar 

  • Ingelbrecht I, Van Houdt H, Van Montagu M, Depicker A (1994) Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci USA 91:10502–10506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inthawong S, Bundithya W, Kuanprasert N, Apavatjrut P (2006) Analysis of intersectional hybrids of Dendrobium by RAPD technique. Kasetsart J (Nat Sci) 40:456–461

    CAS  Google Scholar 

  • Jackson MA, Sternes PR, Nudge SR, Graham MW, Birch RG (2014) Design rules for efficient transgene expression in plants. Plant Biotechnol J 12:925–933

    Article  CAS  PubMed  Google Scholar 

  • Julkife AL, Samian R, Poobathy R, Subramaniam S (2012) Chemotactic movement and bacterial attachment of Agrobacterium tumefaciens towards protocorm-like bodies (PLBs) of Dendrobium sonia-28. Aust J Crop Sci 6:1181–1191

    Google Scholar 

  • Keller G, Spatola L, McCabe D, Martinell B, Swain W, John ME (1997) Transgenic cotton resistant to herbicide bialaphos. Transgen Res 6:385–392

    Article  CAS  Google Scholar 

  • Knudson L (1946) A new nutrient solution for germination of orchid seed. Am Orchid Soc Bull 15:214–217

    CAS  Google Scholar 

  • Koo JC (2013) Isolation of an actin promoter for strong expression of transgenes in the orchid genus Dendrobium. J Plant Biotechnol 40:27–36

    Article  Google Scholar 

  • Kuehnle AR, Sugii N (1992) Transformation of Dendrobium orchid using particle bombardment of protocorms. Plant Cell Rep 11:484–488

    CAS  PubMed  Google Scholar 

  • Kuehnle AR, Lewis DH, Markham KR, Mitchell KA, Davies KM, Jordan BR (1997) Floral flavonoids and pH in Dendrobium orchid species and hybrids. Euphytica 95:187–194

    Article  CAS  Google Scholar 

  • Kuehnle AR, Fujii T, Mudalige R, Alvarez A (2004) Gene and genome mélange in breeding of Anthurium and Dendrobium orchid. Acta Hortic (ISHS) 651:115–122

    Article  CAS  Google Scholar 

  • Kuhlmann M, Finke A, Mascher M, Mette MF (2014) DNA methylation maintenance consolidates RNA-directed DNA methylation and transcriptional gene silencing over generations in Arabidopsis thaliana. Plant J 80:269–281

    Article  CAS  PubMed  Google Scholar 

  • Lau S-E, Schwarzacher T, Othman RY, Harikrishna JA (2015) dsRNA silencing of an R2R3-MYB transcription factor affects flower cell shape in a Dendrobium hybrid. BMC Plant Biol 15:194

    Article  PubMed Central  PubMed  Google Scholar 

  • Ledford H (2013) US regulation misses some GM crops. Nature 500:389–390

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xi YW, Zhang ZK, Huang XQ, Li Y (2001) Co-suppression in tansgenic Petunia hybrida expressing chalcone synthase A (chsA). Sci China (Series C) 44:618–661

    Article  Google Scholar 

  • Liu QF, Zeng SJ, Dong H, Wu KL, Zhang JX, Duan J (2013) In planta transformation of Dendrobium nobile by ovary-injection of Agrobacterium. J South China Agric Univ 34:378–382

    Google Scholar 

  • Malabadi RB, Teixeira da Silva JA, Nataraja K (2008) Green fluorescent protein as a novel marker during genetic transformation of plants. Transgenic Plant J 2:86–109

    Google Scholar 

  • Men S, Ming X, Liu R, Wei C, Li Y (2003a) Agrobacterium-mediated genetic transformation of a Dendrobium orchid. Plant Cell Tiss Organ Cult 75:63–71

    Article  CAS  Google Scholar 

  • Men S, Ming X, Wang Y, Liu R, Wei C, Li Y (2003b) Genetic transformation of two species of orchid by biolistic bombardment. Plant Cell Rep 21:592–598

    CAS  PubMed  Google Scholar 

  • Men SJ, Nie XR, An LX, Li M, Wei CH, Chen QB, Li Y (2005) Transformation of Dendrobium phalaenopsis and D. nobile with chs and ap1 genes. Prop Ornam Plants 5:3–8

    Google Scholar 

  • Mudalige-Jayawickrama RG (2014) Methods for expanding color palette in Dendrobium orchids. US patent US2014/0201865, 17 July 2014

  • Mudalige-Jayawickrama RG, Champagne MM, Hieber AD, Kuehnle AR (2005) Cloning and characterization of two anthocyanin biosynthetic genes from Dendrobium orchid. J Am Soc Hortic Sci 130:611–618

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nan GL, Kuehnle AR (1995) Factors affecting gene delivery by particle bombardment of Dendrobium orchids. In Vitro Cell Dev Biol—Plant 31:131–136

    Article  Google Scholar 

  • Nan GL, Kuehnle AR, Kado CI (1998) Transgenic Dendrobium orchid through Agrobacterium-mediated transformation. Malay Orchid Rev 32:93–96

    Google Scholar 

  • Nishihara M, Nakatsuka T (2011) Genetic engineering of flavonoid pigments to modify flower colour in floricultural plants. Biotechnol Lett 33:433–441

    Article  CAS  PubMed  Google Scholar 

  • Phlaetita W, Chin DP, Mii M (2013) Transformation of Dendrobium nobile for producing plants with blue flowers. In Vitro Cell Dev Biol—Plant 49:478 (abstract)

    Google Scholar 

  • Phlaetita W, Chin DP, Tokuhara K, Nakamura I, Mii M (2015) Agrobacterium-mediated transformation of protocorm-like bodies in Dendrobium Formidible ‘Ugusu’. Plant Biotechnol 32:225–231

    Article  Google Scholar 

  • Pinthong R, Sujipuli K, Ratanasut K (2013) Agroinfiltration for transient gene expression in floral tissues of Dendrobium Sonia ‘Earsakul’. In: Proceedings of an international graduate research conference, 20 Dec, 2013, Chiang Mai University, Thailand, ST-1–ST-6

  • Pinthong R, Sujipuli K, Ratanasut K (2014) Agroinfiltration for transient gene expression in floral tissues of Dendrobium Sonia ‘Earsakul’. J Agric Technol 10:459–465

    CAS  Google Scholar 

  • Ratanasut K, Monmai C, Piluk P (2015) Transient hairpin RNAi-induced silencing in floral tissues of Dendrobium Sonia ‘Earsakul’ by agroinfiltration for rapid assay of flower colour modification. Plant Cell Tiss Organ Cult 120:643–654

    Article  CAS  Google Scholar 

  • Sahu NK, Shilakari G, Nayak A, Kohli DV (2007) Antisense technology: a selective tool for gene expression regulation and gene targeting. Curr Pharm Biotechnol 8:291–304

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Toki K, Uesato K, Shigihara A, Honda T (1994) An acylated cyanidin glycoside from the red-purple flowers of Dendrobium. Phytochemistry 37:245–248

    Article  CAS  PubMed  Google Scholar 

  • Savin KW, Baudinette SC, Graham MW, Michael MZ, Nugent GD, Lu CY, Chandler SF, Cornish EC (1995) Antisense ACC oxidase RNA delays carnation petal senescence. HortScience 30:970–972

    CAS  Google Scholar 

  • Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242:419–423

    Article  CAS  PubMed  Google Scholar 

  • Stalker DM, Kiser JA, Baldwin G, Coulombe B, Houck CM (1996) Cotton weed control using the BXN™ system. In: Duke SO (ed) Herbicide-resistant crops: agricultural, environmental, economic, regulatory and technical aspects. Lewis Publishers, New York, pp 93–105

    Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Stancato GC, Mazzafera P, Buckeridge MS (2001) Effect of a drought period on the mobilisation of non-structural carbohydrates, photosynthetic eficiency and water status in an epiphytic orchid. Plant Physiol Biochem 39:1009–1016

    Article  CAS  Google Scholar 

  • Su V, Hsu BD (2003) Cloning and expression of a putative cytochrome P450 gene that influences the colour of Phalaenopsis flowers. Biotechnol Lett 25:1933–1939

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam S, Samian R, Rathinam M, Rathinam X (2009) Preliminary factors influencing transient expression of GusA in Dendrobium Savin White protocorm-like bodies (PLBs) using Agrobacterium-mediated transformation system. World Appl Sci J 7:1295–1307

    CAS  Google Scholar 

  • Suwanaketchanatit C, Chaisuk P, Piluek J, Peyachoknagul S, Huehne PS (2006) Evaluation of constitutive promoters for gene expression in Dendrobium protocorms and flowers. Kasetsart J (Nat Sci) 40:934–943

    Google Scholar 

  • Suwanaketchanatit C, Piluek J, Peyachoknagul S, Huehne PS (2007) High efficiency of stable genetic transformation in Dendrobium via microprojectile bombardment. Biol Plant 51:720–727

    Article  CAS  Google Scholar 

  • Tanaka Y, Brugliera F (2013) Flower colour and cytochromes P450. Philos Trans R Soc B 368:20120432

    Article  Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tiss Organ Cult 80:1–24

    Article  CAS  Google Scholar 

  • Tanaka Y, Brugliera F, Chandler S (2009) Recent progress of flower colour modification by biotechnology. Int J Mol Sci 10:5350–5369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tatsuzawa F, Yukawa T, Shinoda K, Saito N (2005) Acylated anthocyanins in the flowers of genus Dendrobium section Phalaenanthe (Orchidaceae). Biochem Syst Ecol 33:625–629

    Article  CAS  Google Scholar 

  • Tee CS, Maziah M (2005) Optimization of biolistic bombardment for Dendrobium Sonia 17 calluses using GFP and GUS as the reporter system. Plant Cell Tiss Organ Cult 80:77–89

    Article  CAS  Google Scholar 

  • Tee CS, Marziah M, Tan CS, Abdullah MP (2003) Evaluation of different promoters driving the GFP reporter gene and selected target tissues for particle bombardment of Dendrobium Sonia 17. Plant Cell Rep 21:452–458

    CAS  PubMed  Google Scholar 

  • Tee CS, Maziah M, Tan CS, Abdullah MP (2011) Selection of co-transformed Dendrobium Sonia 17 using hygromycin and green fluorescent protein. Biol Plant 55:572–576

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA (2012a) Is BA (6-benzyladenine) BAP (6-benzylaminopurine)? Asian Australian. J Plant Sci Biotechnol 6:121–124

    Google Scholar 

  • Teixeira da Silva JA (2012b) Callus, calluses or calli: multiple plurals? Asian Australian. J Plant Sci Biotechnol 6:125–126

    Google Scholar 

  • Teixeira da Silva JA, Chin DP, Van PT, Mii M (2011) Transgenic orchids. Sci Hortic 130:673–680

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Aceto S, Liu W, Yu H, Kanno A (2014a) Genetic control of flower development, color and senescence of Dendrobium orchids. Sci Hortic 175:74–86

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Kerbauy GB, Zeng SJ, Chen ZL, Duan J (2014b) In vitro flowering of orchids. Crit Rev Biotechnol 34:56–76

    Article  PubMed  Google Scholar 

  • Teixeira da Silva JA, Zeng SJ, Dobránszki J, Cardoso JC, Kerbauy GB (2014c) In vitro flowering of Dendrobium. Plant Cell Tiss Organ Cult 119:447–456

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Zeng SJ, Dobránszki J, Galdiano R Jr, Cardoso JC, Vendrame WA (2014d) In vitro conservation of Dendrobium germplasm. Plant Cell Rep 33:1413–1423

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA, Dobránszki J, Cardoso JC, Zeng SJ (2015a) Micropropagation of Dendrobium: a review. Plant Cell Rep 34:671–704

    Article  CAS  Google Scholar 

  • Teixeira da Silva JA, Jin XH, Dobránszki J, Lu JJ, Wang HZ, Zotz G, Cardoso JC, Zeng SJ (2015b) Advances in Dendrobium molecular research: applications in genetic variation, identification and breeding. Mol Phylogenet Evol. doi:10.1016/j.ympev.2015.10.012 (in press)

    PubMed  Google Scholar 

  • Teixeira da Silva JA, Tsavkelova E, Ng TB, Dobránszki J, Parthibhan S, Cardoso JC, Rao MV, Zeng SJ (2015c) Asymbiotic in vitro seed propagation of Dendrobium. Plant Cell Rep 34:1685–1706

    Article  CAS  PubMed  Google Scholar 

  • Teixeira da Silva JA, Tsavkelova E, Zeng SJ, Ng TB, Dobránszki J, Parthibhan S, Cardoso JC, Rao MV (2015d) Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development. Planta 242:1–22

    Article  CAS  PubMed  Google Scholar 

  • Theologis A, Zarembinski TI, Oeller PW, Liang X, Abel S (1992) Modification of fruit ripening by suppressing gene expression. Plant Physiol 100:549–551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tokuhara K, Mii M (1993) Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flwer stalk buds. Plant Cell Rep 13:7–11

    Article  CAS  PubMed  Google Scholar 

  • Uddain J, Zakaria L, Lynn CB, Subramaniam S (2015) Preliminary assessment on Agrobacterium-mediated transformation of Dendrobium Broga Giant orchid’s PLBs. Emir J Food Agric 27:669–677

    Google Scholar 

  • United States Enviromental Protection Agency (EPA) (2012) Guidelines for water reuse. US Agency for International Development, p 643. Washington DC. http://nepis.epa.gov/Adobe/PDF/P100FS7K.pdf. Last accessed 24 Nov 2015

  • Vacin E, Went FW (1949) Some pH changes in nutrient solutions. Bot Gaz 110:605–613

    Article  CAS  Google Scholar 

  • Whang SS, Um WS, Song IJ, Lim PO, Choi K, Park KW, Kang KW, Choi MS, Koo JC (2011) Molecular analysis of anthocyanin biosynthetic genes and control of flower coloration by flavonoid 3′,5′-Hydroxylase (F3′5′H) in Dendrobium moniliforme. J Plant Biol 54:209–218

    Article  CAS  Google Scholar 

  • Xu Q, Zhang GQ, Liu ZJ, Luo YB (2014) Two new species of Dendrobium (Orchidaceae: Epidendroideae) from China: evidence from morphology and DNA. Phylotaxa 174:129–143

    Article  Google Scholar 

  • Yang SH, Yy H, Goh CJ (2003) Functional characterization of a cytokinin oxidase gene DSCKX1 in Dendrobium orchid. Plant Mol Biol 51:237–248

    Article  CAS  PubMed  Google Scholar 

  • Yang CQ, Qin YG, Liu W (2006) Preliminary study on effects of sonication on Agrobacterium-mediated transformation of Dendrobium nobile Lindl. J Sichuan Agric Univ 24(4):455–458

    Google Scholar 

  • Yang AF, Su Q, An LJ, Liu JF, Wu W, Qiu Z (2009) Detection of vector- and selectable marker-free transgenic maize with a linear GFP cassette transformation via the pollen-tube pathway. J Biotechnol 139:1–5

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Li G, Li MG, Wang JH (2010a) Transgenic soybean with low phytate content constructed by Agrobacterium transformation and pollen-tube pathway. Euphytica 177:375–382

    Article  Google Scholar 

  • Yang X, Wang Y, Luo J (2010b) Transformation of lea3 gene into Dendrobium candidum Wall. ex Lindl. for enhancing its salt tolerance. Chin J Appl Environ Biol 16:622–626 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Yu Z, Chen M, Lin N, Lu H, Ming X, Zheng H, Qu LJ, Chen Z (1999) Recovery of transgenic orchid plants with hygromycin selection by particle bombardment to protocorms. Plant Cell Tiss Organ Cult 58:87–92

    Article  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2001) Agrobacterium-mediated transformation of a Dendrobium orchid with the class 1 knox gene DOH1. Plant Cell Rep 20:301–305

    Article  CAS  Google Scholar 

  • Yu H, Yang SH, Goh CJ (2002) Spatial and temporal expression of the orchid floral homeotic gene DOMADS1 is mediated by its upstream regulatory regions. Plant Mol Biol 49:225–237

    Article  CAS  PubMed  Google Scholar 

  • Zeng SJ, Chen ZL, Wu KL, Zhang JX, Bai CK, Teixeira da Silva JA, Duan J (2011) Asymbiotic seed germination, induction of calli and protocorm-like bodies, and in vitro seedling development of the rare and endangered Nothodoritis zhejiangensis Chinese orchid. HortScience 46(3):460–465

    CAS  Google Scholar 

  • Zhang Y, Butelli E, Martin C (2014) Engineering anthocyanin biosynthesis in plants. Curr Opin Plant Biol 19:81–90

    Article  CAS  PubMed  Google Scholar 

  • Zheng Q, Guo WM, Zheng YP, Wang GD, Fan WF (2009) Regeneration system establish of spring Dendrobium cultivars from PLBs way induced with ultrasonic wave. Acta Agric Univ Jiangxiensis 31(6):1019–1025 (in Chinese)

    CAS  Google Scholar 

  • Zheng Q, Zheng YP, Wang GD, Guo WM, Zhang Z (2011) Sonication assisted Agrobacterium-mediated transformation of chalcone synthase (CHS) gene to spring Dendrobium cultivar ‘Sanya’. Afr J Biotechnol 10:11832–11838

    CAS  Google Scholar 

  • Zheng Q, Zheng YP, Wang GD, Guo WM, Fan WF, Wang C (2012) Sonication-assisted Agrobacterium-mediated transformation of the ACC gene to interfere the production of ethylene in spring Dendrobium cv. ‘Sanya’. Russ J Plant Physiol 59:266–274

    Article  CAS  Google Scholar 

  • Zhou GY, Weng J, Gong ZZ, Zhen YS, Yang WX, Shen WF, Wang ZF, Tao QZ, Huang JG, Qian SY, Lin GL, Ying MC, Xue DY, Hong AH, Xu YJ (1988) Molecular breeding of agriculture: a technique for introducing exogenous DNA into plants after self pollination. Sci Agric Sin 21:1–6

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime A. Teixeira da Silva, Judit Dobránszki, Jean Carlos Cardoso, Stephen F. Chandler or Songjun Zeng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by N. Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira da Silva, J.A., Dobránszki, J., Cardoso, J.C. et al. Methods for genetic transformation in Dendrobium . Plant Cell Rep 35, 483–504 (2016). https://doi.org/10.1007/s00299-015-1917-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-015-1917-3

Keywords

Navigation