Skip to main content
Log in

Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Phenotyping of specific cellular resistance responses and improvement of previous genetic map allowed the identification of novel genomic regions controlling cellular mechanisms involved in pea resistance to ascochyta blight and provided candidate genes suitable for MAS.

Abstract

Didymella pinodes, causing ascochyta blight, is a major pathogen of the pea crop and is responsible for serious damage and yield losses. Resistance is inherited polygenically and several quantitative trait loci (QTLs) have been already identified. However, the position of these QTLs should be further refined to identify molecular markers more closely linked to the resistance genes. In previous works, resistance was scored visually estimating the final disease symptoms; in this study, we have conducted a more precise phenotyping of resistance evaluating specific cellular resistance responses at the histological level to perform a more accurate QTL analysis. In addition, P665 × Messire genetic map used to identify the QTLs was improved by adding 117 SNP markers located in genes. This combined approach has allowed the identification, for the first time, of genomic regions controlling cellular mechanisms directly involved in pea resistance to ascochyta blight. Furthermore, the inclusion of the gene-based SNP markers has allowed the identification of candidate genes co-located with QTLs and has provided robust markers for marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed Central  PubMed  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-Hénaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  CAS  PubMed  Google Scholar 

  • Aubry S, Mani J, Hörtensteiner S (2008) Stay-green protein, defective Mendel’s green cotyledon mutant, acts independent and upstream of pheophorbide an oxygenase in the chlorophyll catabolic pathway. Plant Mol Biol 67:243–256

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Boisson B, Giglione C, Meinnel T (2003) Unexpected protein families including cell defense components feature in the N-myristoylome of a higher eukaryote. J Biol Chem 278:43418–43429

    Article  CAS  PubMed  Google Scholar 

  • Bordat A, Savois V, Nicolas M, Salse J, Chauveau A, Bourgeois M, Burstin J (2011) Translational genomics in legumes allowed placing in silico 5460 unigenes on the pea functional map and identified candidate genes in Pisum sativum L. G3 Gene Genome Genet 1:93–103

    CAS  Google Scholar 

  • Borisov AY, Madsen LH, Tsyganov E, Umehara Y, Voroshilova VA, Batagov AO, Sandal N, Mortensen A, Schauser L, Ellis N, Tikhonovich IA, Stougaard J (2003) The Sym35 gene required for root nodule development in pea is an ortholog of Nin from Lotus japonicas. Plant Physiol 131:1009–1017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bretag TW (1989) Resistance of pea cultivars to ascochyta blight caused by Mycosphaerella pinodes, Phoma medicaginis and Ascochyta pisi. Ann Appl Biol 114:156–157

    Google Scholar 

  • Bretag TW (1991) Epidemiology and control of ascochyta blight of field peas. PhD Thesis, La Trobe University, Australia

  • Bretag TW, Keane PJ, Price TV (2006) The epidemiology and control of ascochyta blight in field peas: a review. Aust J Agric Res 57:883–902

    Article  Google Scholar 

  • Carrillo E, Rubiales D, Pérez-de-Luque A, Fondevilla S (2013) Characterization of mechanisms of resistance against Didymella pinodes in Pisum spp. Eur J Plant Pathol 135:761–769

    Article  CAS  Google Scholar 

  • Chang MM, Horovitz D, Culley D, Hadwiger LA (1995) Molecular cloning and characterization of a pea chitinase gene expressed in response to wounding, fungal infection and the elicitor chitosan. Plant Mol Biol 28:105–111

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Luckow MA, Doyle J, Cook DR (2006) Development of nuclear gene-derived molecular markers linked to legume genetics maps. Mol Genet Genom 276:56–70

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark VL (2004) SAS/STAT 91: User’s guide. SAS Institute Inc, Cary

    Google Scholar 

  • Clulow SA, Lewis BG, Matthews P (1991) A pathotype classification for Mycosphaerella pinodes. J Phytopathol 131:322–332

    Article  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • DeMason DA, Weeden NF (2006) Two Argonaute 1 genes from pea. Pisum Genet 38:3–9

    Google Scholar 

  • Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Hénaut I, Aubert G (2010) Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genom 11:468

    Article  Google Scholar 

  • Edwards A, Heckmann AB, Yousafzai F, Duc G, Downie JA (2007) Structural implications of mutation in the pea SYM8 symbiosis gene, the DMIl ortholog, encoding a predicted ion cannel. Mol Plant Microbe Interact 20:1183–1191

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2012) Statistical databases. Food and Agriculture Organization of the United Nations

  • Fernández-Aparicio M, Amri M, Kharrat M, Rubiales D (2010) Intercropping reduces Mycosphaerella pinodes severity and delays upward progress on the pea plant. Crop Prot 29:744–750

    Article  Google Scholar 

  • Fondevilla S, Ávila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–315

    Article  Google Scholar 

  • Fondevilla S, Cubero JI, Rubiales D (2007) Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. In: Tivoli B, Baranger A, Muehlbauer FJ, Cooke BM (eds) Ascochyta blights of grain legumes. Springer, Netherlands, pp 53–58

    Chapter  Google Scholar 

  • Fondevilla S, Satovic Z, Rubiales D, Moreno MT, Torres AM (2008) Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp syriacum. Mol Breed 21:439–454

    Article  CAS  Google Scholar 

  • Fondevilla S, Almeida NF, Satovic Z, Rubiales D, Patto MCV, Cubero JI, Torres AM (2011) Identification of common genomic regions controlling resistance to Mycosphaerella pinodes, earliness and architectural traits in different pea genetic backgrounds. Euphytica 182:43–52

    Article  Google Scholar 

  • Fondevilla S, Martín-Sanz A, Satovic Z, Fernández-Romero MD, Rubiales D, Caminero C (2012) Identification of quantitative trait loci involved in resistance to Pseudomonas syringae pv syringae in pea (Pisum sativum L.). Euphytica 186:805–812

    Article  Google Scholar 

  • Fondevilla S, Rotter B, Krezdorn N, Jüngling R, Winter P, Rubiales D (2013) Identification of genes involved in resistance to Didymella pinodes in pea by deepSuperSAGE genome-wide transcriptome profiling. Book of abstracts of First Legume Society Conference, pp 148

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jing R, Johnson R, Seres A, Kiss G, Ambrose MJ, Knox MR, Ellis THN, Flavell AJ (2007) Gene-based sequence diversity analysis of field pea (Pisum). Genetics 177:2263–2275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khan TN, Timmerman-Vaughan GM, Rubiales D, Warkentin TD, Siddique KHM, Erskine W, Barbetti MJ (2013) Didymella pinodes and its management in field pea: challenges and opportunities. Field Crop Res 148:61–77

    Article  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kraft JM, Dunne B, Goulden D, Armstrong S (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82:251–253

    Article  Google Scholar 

  • Krussell L, Sato N, Fukuhara I, Koch BE, Grossmann C, Okamoto S, Oka-Kira E, Otsubo Y, Aubert G, Nakagawa T, Sato S, Tabata S, Duc G, Parniske M, Wang TL, Kawaguchi M, Stougaard J (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Lawyer AS (1984) Diseases caused by Ascochyta spp. In: Hagedorn DJ (ed) The compendium of pea diseases. American Phytopathological Society, Wisconsin, pp 11–15

    Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Ann Rev Plant Biol 47:127–158

    Article  CAS  Google Scholar 

  • McMurray LS, Davidson JA, Lines MD, Leonforte A, Salam MU (2011) Combining management and breeding advances to improve field pea (Pisum sativum L.) grain yields under changing climatic conditions in south-eastern Australia. Euphytica 180:69–88

    Article  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant–fungal interactions. Plant J 29:257–268

    Article  CAS  PubMed  Google Scholar 

  • Nasir M, Hoppe HH (1997) Evaluation of varietal susceptibility in peas to Mycosphaerella pinodes. Test Agrochem Cv 18:32–33

    Google Scholar 

  • Prioul S, Onfroy C, Tivoli B, Baranger A (2003) Controlled environment assessment of partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) seedlings. Euphytica 131:121–130

    Article  CAS  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.), at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  CAS  PubMed  Google Scholar 

  • Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114:971–984

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Katagiri F (2012) Membrane microdomain may be a platform for immune signaling. Plant Signal Behav 7:454–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Razdan K, Heinrikson RL, Zurcher-Neely H, Morris PW, Anderson LE (1992) Chloroplast and cytoplasmic enzymes: isolation and sequencing of cDNAs coding for two distintic pea chloroplast aldolases. Arch Biochem Biophys 298:192–197

    Article  CAS  PubMed  Google Scholar 

  • Renner T, Specht C (2012) Molecular and functional evolution of class I chitinases for plant carnivory in the Caryophyllales. Mol Biol Evol 29:2971–2985

    Article  CAS  PubMed  Google Scholar 

  • Roger C, Tivoli B (1996) Spatio-temporal development of pycnidia and perithecia and dissemination of spores of Mycosphaerella pinodes on pea (Pisum sativum). Plant Pathol 45:518–528

    Article  Google Scholar 

  • Rubiales D, Fondevilla S (2012) Future prospects for ascochyta blight resistance breeding in cool season food legumes. Front Plant Sci 3:27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Cubero JI, Sillero JC (2003) Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot 22:865–872

    Article  Google Scholar 

  • Rubiales D, Fernández-Aparicio M, Moral A, Barilli E, Sillero JC, Fondevilla S (2009) Disease resistance in pea (Pisum sativum L.) types for autumn sowings in Mediterranean environments. Czech J Genet Plant Breed 45:135–142

    Google Scholar 

  • Schoeny A, Menat J, Darsonval A, Rouault F, Jumel S, Tivoli B (2008) Effect of pea canopy architecture on splash dispersal of Mycosphaerella pinodes conidia. Plant Pathol 57:1073–1085

    Article  Google Scholar 

  • Seki H, Nakamura N, Marutani M, Okabe T, Sanematsu S, Inagaki Y, Ichinose Y (2002) Molecular cloning of cDNA for a novel pea Dof protein, PsDof1, and its DNA-binding activity to the promoter of PsDof1 gene. Plant Biotechnol 19:251–260

    Article  CAS  Google Scholar 

  • Stuckey HP (1940) Georgia experiment station annual report. In: University System of Georgia, U (ed) Georgia Experiment Station, Georgia, USA, pp 50–64

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Blade S, Penner G (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to Mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491

    Article  PubMed  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.) using populations from two crosses. Theor Appl Genet 109:1620–1631

    Article  CAS  PubMed  Google Scholar 

  • Tivoli B, Banniza S (2007) Comparison of the epidemiology of ascochyta blights on grain legumes. In: Tivoli B, Baranger A, Muehlbauer FJ, Cooke BM (eds) Ascochyta blights of grain legumes. Springer, Netherlands, pp 59–76

    Chapter  Google Scholar 

  • Tivoli B, Béasse C, Lemarchand E, Masson E (1996) Effect of ascochyta blight (Mycosphaerella pinodes) on yield components of single pea (Pisum sativum) plants under field conditions. Ann Appl Biol 129:207–216

    Article  Google Scholar 

  • Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetingham M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253

    Article  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell Online 15:533–543

    Article  CAS  Google Scholar 

  • Wallen VR (1965) Field evaluation and the importance of the Ascochyta complex on peas. Can J Plant Sci 45:27–33

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 25 Department of Statistics. North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/QTLcart/WQTLCarthtm

  • Weller JL, Liew LC, Hecht VF, Rajandran V, Laurie RE, Ridge S, Lejeune-Hénaut I (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc Nat Acad Sci 109:21158–21163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wroth JM (1996) Host-pathogen relationship of the ascochyta blight (Mycosphaerella pinodes (Berk Blox) Vesterg) disease of field pea (Pisum sativum L.). PhD thesis University of Western Australia, Perth

  • Wroth JM (1998) Possible role for wild genotypes of Pisum spp to enhance ascochyta blight resistance in pea. Anim Prod Sci 38:469–479

    Article  Google Scholar 

  • Wroth JM (1999) Evidence suggests that Mycosphaerella pinodes infection of Pisum sativum is inherited as a quantitative trait. Euphytica 107:193–204

    Article  Google Scholar 

  • Wroth JM, Khan TN (1999) Differential responses of field pea (Pisum sativum L.) to ascochyta blight (Mycosphaerella pinodes): rating disease in the field. Aus J Agric Res 50:601–615

    Article  Google Scholar 

  • Wu Y, Bhat PR, Close TJ, Lonardi S (2008) Efficient and accurate construction of genetic linkage maps from the minimum spanning tree of a graph. PLoS Genet 4:e1000212

    Article  PubMed Central  PubMed  Google Scholar 

  • Xue AG, Warkentin TD (2001) Partial resistance to Mycosphaerella pinodes in field pea. Can J Plant Sci 81:535–540

    Article  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Hwang SF, Chang KF, Gossen BD, Strelkov SE, Turnbull GD, Blade SF (2006) Genetic resistance to in 558 field pea accessions. Crop Sci 46:2409–2414

    Article  Google Scholar 

Download references

Acknowledgments

E. Carrillo was granted by a Cabildo de La Palma-CSIC PhD grant and S. Fondevilla by a MC contract: FP7-PEOPLE-2011-IEF-300235. Financial support by projects AGL2011-22524 (co-financed by FEDER) and FP7-ARIMNet-Medileg is acknowledged. The authors wish to thank Sophie Valière and Cécile Donnadieu for the use of the GeT-PlaGe Genotyping platform and their expertise.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carrillo.

Additional information

Communicated by P. Puigdomenech.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 147 kb)

Supplementary material 2 (DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrillo, E., Satovic, Z., Aubert, G. et al. Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 33, 1133–1145 (2014). https://doi.org/10.1007/s00299-014-1603-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-014-1603-x

Keywords

Navigation