Skip to main content

Advertisement

Log in

Antiphospholipid syndrome patients display reduced titers of soluble CD21 in their sera irrespective of circulating anti-β2-glycoprotein-I autoantibodies

  • Orignal Article
  • Published:
Rheumatology International Aims and scope Submit manuscript

Abstract

A soluble form of the complement receptor CD21 (sCD21) is shed from the lymphocyte surface. The sCD21 is able to bind all known ligands such as CD23, sCD23, Epstein–Barr virus and C3d in immune complexes. Here, we show the serum levels of sCD21 in sera the of antiphospholipid syndrome (APS) patients. Antiphospholipid syndrome is an autoimmune disorder in which autoantibodies cause heart attack, stroke and miscarriage. Antiphospholipid syndrome may appear as primary or in association with systemic lupus erythromatosus (SLE) and other autoimmune diseases. Here, we ask whether APS patients have different sCD21 titers compared to healthy persons and whether sCD21 levels correlate with the presence of anti-β2-GPI autoantibodies. We show that autoimmune APS patients have significantly reduced amounts of sCD21 in their sera, irrespective of the presence of anti-β2-GPI autoantibodies. In our APS patients cohort additional SLE, vasculities, DVT (deep vein thrombosis), fetal loss or thrombosis did not correlate to the reduced level of sCD21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Timens W, Boes A, Rozeboom-Uiterwijk T, Poppema S (1989) Immaturity of the human splenic marginal zone in infancy. Possible contribution to the deficient infant immune response. J Immunol 143(10):3200–3206

    PubMed  CAS  Google Scholar 

  2. Aubry JP, Pochon S, Graber P, Jansen KU, Bonnefoy JY (1992) CD21 is a ligand for CD23 and regulates IgE production. Nature 358(6386):505–507

    Article  PubMed  CAS  Google Scholar 

  3. Masilamani M, Kassahn D, Mikkat S, Glocker MO, Illges H (2003) B cell activation leads to shedding of complement receptor type II (CR2/CD21). Eur J Immunol 33(9):2391–2397

    Article  PubMed  CAS  Google Scholar 

  4. Masilamani M, von Seydlitz E, Bastmeyer M, Illges H (2002) T cell activation induced by cross-linking CD3 and CD28 leads to silencing of Epstein–Barr virus/C3d receptor (CR2/CD21) gene and protein expression. Immunobiology 206(5):528–536

    Article  PubMed  CAS  Google Scholar 

  5. Ling N, Hansel T, Richardson P, Brown B (1991) Cellular origins of serum complement receptor type 2 in normal individuals and in hypogammaglobulinaemia. Clin Exp Immunol 84(1):16–22

    Article  PubMed  CAS  Google Scholar 

  6. Myones BL, Ross GD (1987) Identification of a spontaneously shed fragment of B cell complement receptor type two (CR2) containing the C3d-binding site. Complement 4(2):87–98

    PubMed  CAS  Google Scholar 

  7. Weis JJ, Tedder TF, Fearon DT (1984) Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes. Proc Natl Acad Sci USA 81(3):881–885

    Article  PubMed  CAS  Google Scholar 

  8. Huemer HP, Larcher C, Prodinger WM, Petzer AL, Mitterer M, Falser N (1993) Determination of soluble CD21 as a parameter of B cell activation. Clin Exp Immunol 93(2):195–199

    Article  PubMed  CAS  Google Scholar 

  9. Reynes M, Aubert JP, Cohen JH, Audouin J, Tricottet V, Diebold J, Kazatchkine MD (1985) Human follicular dendritic cells express CR1, CR2, and CR3 complement receptor antigens. J Immunol 135(4):2687–2694

    PubMed  CAS  Google Scholar 

  10. Tsoukas CD, Lambris JD (1988) Expression of CR2/EBV receptors on human thymocytes detected by monoclonal antibodies. Eur J Immunol 18(8):1299–1302

    Article  PubMed  CAS  Google Scholar 

  11. Hebell T, Ahearn JM, Fearon DT (1991) Suppression of the immune response by a soluble complement receptor of B lymphocytes. Science 254(5028):102–105

    Article  PubMed  CAS  Google Scholar 

  12. Qin D, Wu J, Carroll MC, Burton GF, Szakal AK, Tew JG (1998) Evidence for an important interaction between a complement-derived CD21 ligand on follicular dendritic cells and CD21 on B cells in the initiation of IgG responses. J Immunol 161(9):4549–4554

    PubMed  CAS  Google Scholar 

  13. Fischer E, Delibrias C, Kazatchkine MD (1991) Expression of CR2 (the C3dg/EBV receptor, CD21) on normal human peripheral blood T lymphocytes. J Immunol 146(3):865–869

    PubMed  CAS  Google Scholar 

  14. Fingeroth JD, Weis JJ, Tedder TF, Strominger JL, Biro PA, Fearon DT (1984) Epstein–Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci USA 81(14):4510–4514

    Article  PubMed  CAS  Google Scholar 

  15. Lowe J, Brown B, Hardie D, Richardson P, Ling N (1989) Soluble forms of CD21 and CD23 antigens in the serum in B cell chronic lymphocytic leukaemia. Immunol Lett 20(2):103–109

    Article  PubMed  CAS  Google Scholar 

  16. Delibrias CC, Fischer E, Bismuth G, Kazatchkine MD (1992) Expression, molecular association, and functions of C3 complement receptors CR1 (CD35) and CR2 (CD21) on the human T cell line HPB-ALL. J Immunol 149(3):768–774

    PubMed  CAS  Google Scholar 

  17. Moore MD, DiScipio RG, Cooper NR, Nemerow GR (1989) Hydrodynamic, electron microscopic, and ligand-binding analysis of the Epstein–Barr virus/C3dg receptor (CR2). J Biol Chem 264(34):20576–20582

    PubMed  CAS  Google Scholar 

  18. Masilamani M, Nowack R, Witte T, Schlesier M, Warnatz K, Glocker MO, Peter HH, Illges H (2004) Reduction of soluble complement receptor 2/CD21 in systemic lupus erythomatosus and Sjogren’s syndrome but not juvenile arthritis. Scand J Immunol 60(6):625–630

    Article  PubMed  CAS  Google Scholar 

  19. Fremeaux-Bacchi V, Fischer E, Lecoanet-Henchoz S, Mani JC, Bonnefoy JY, Kazatchkine MD (1998) Soluble CD21 (sCD21) forms biologically active complexes with CD23: sCD21 is present in normal plasma as a complex with trimeric CD23 and inhibits soluble CD23-induced IgE synthesis by B cells. Int Immunol 10(10):1459–1466

    Article  PubMed  CAS  Google Scholar 

  20. Ulgiati D, Pham C, Holers VM (2002) Functional analysis of the human complement receptor 2 (CR2/CD21) promoter: characterization of basal transcriptional mechanisms. J Immunol 168(12):6279–6285

    PubMed  CAS  Google Scholar 

  21. Hannan J, Young K, Szakonyi G, Overduin MJ, Perkins SJ, Chen X, Holers VM (2002) Structure of complement receptor (CR) 2 and CR2-C3d complexes. Biochem Soc Trans 30(Pt 6):983–989

    PubMed  CAS  Google Scholar 

  22. Galli M, Comfurius P, Maassen C, Hemker HC, de Baets MH, van Breda-Vriesman PJ, Barbui T, Zwaal RF, Bevers EM (1990) Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 335(8705):1544–1547

    Article  PubMed  CAS  Google Scholar 

  23. Masilamani M, von Kempis J, Illges H (2004) Decreased levels of serum soluble complement receptor-II (CR2/CD21) in patients with rheumatoid arthritis. Rheumatology 43(2):186–190

    Google Scholar 

  24. Sammaritano LR, Gharavi AE (1992) Antiphospholipid antibody syndrome. Clin Lab Med 12(1):41–59

    PubMed  CAS  Google Scholar 

  25. Shoenfeld Y (2003) Systemic antiphospholipid syndrome. Lupus 12(7):497–498

    Article  PubMed  CAS  Google Scholar 

  26. Blank M, Tincani A, Shoenfeld Y (1994) Induction of experimental antiphospholipid syndrome in naive mice with purified IgG antiphosphatidylserine antibodies. J Rheumatol 21(1):100–104

    PubMed  CAS  Google Scholar 

  27. George J, Blank M, Levy Y, Meroni P, Damianovich M, Tincani A, Shoenfeld Y (1998) Differential effects of anti-beta2-glycoprotein I antibodies on endothelial cells and on the manifestations of experimental antiphospholipid syndrome. Circulation 97(9):900–906

    PubMed  CAS  Google Scholar 

  28. Blank M, Cohen J, Toder V, Shoenfeld Y (1991) Induction of anti-phospholipid syndrome in naive mice with mouse lupus monoclonal and human polyclonal anti-cardiolipin antibodies. Proc Natl Acad Sci USA 88(8):3069–3073

    Article  PubMed  CAS  Google Scholar 

  29. Blank M, Shoenfeld Y, Cabilly S, Heldman Y, Fridkin M, Katchalski-Katzir E (1999) Prevention of experimental antiphospholipid syndrome and endothelial cell activation by synthetic peptides. Proc Natl Acad Sci USA 96(9):5164–5168

    Article  PubMed  CAS  Google Scholar 

  30. Blank M, George J, Barak V, Tincani A, Koike T, Shoenfeld Y (1998) Oral tolerance to low dose beta 2-glycoprotein I: immunomodulation of experimental antiphospholipid syndrome. J Immunol 161(10):5303–5312

    PubMed  CAS  Google Scholar 

  31. Meroni P, Ronda N, Raschi E, Borghi MO (2005) Humoral autoimmunity against endothelium: theory or reality? Trends Immunol 26(5):275–281

    Article  PubMed  CAS  Google Scholar 

  32. Blank M, Krause I, Fridkin M, Keller N, Kopolovic J, Goldberg I, Tobar A, Shoenfeld Y (2002) Bacterial induction of autoantibodies to beta2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. J Clin Invest 109(6):797–804

    PubMed  CAS  Google Scholar 

  33. Masilamani M, Apell HJ, Illges H (2002) Purification and characterization of soluble CD21 from human plasma by affinity chromatography and density gradient centrifugation. J Immunol Methods 270(1):11–18

    PubMed  CAS  Google Scholar 

  34. Lyubchenko T, dal Porto J, Cambier JC, Holers VM (2005) Coligation of the B cell receptor with complement receptor type 2 (CR2/CD21) using its natural ligand C3dg: activation without engagement of an inhibitory signaling pathway. J Immunol 174(6):3264–3272

    PubMed  CAS  Google Scholar 

  35. Szakonyi G, Guthridge JM, Li D, Young K, Holers VM, Chen XS (2001) Structure of complement receptor 2 in complex with its C3d ligand. Science 292(5522):1725–1728

    Article  PubMed  CAS  Google Scholar 

  36. Carel JC, Myones BL, Frazier B, Holers VM (1990) Structural requirements for C3d, g/Epstein–Barr virus receptor (CR2/CD21) ligand binding, internalization, and viral infection. J Biol Chem 265(21):12293–12299

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by AUTOROME European Community grant no. LSHM-CT-2004-005264 to HI and MB. AS is a Marie Curie Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Illges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Blank, M., Shoenfeld, Y. et al. Antiphospholipid syndrome patients display reduced titers of soluble CD21 in their sera irrespective of circulating anti-β2-glycoprotein-I autoantibodies. Rheumatol Int 28, 661–665 (2008). https://doi.org/10.1007/s00296-007-0503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00296-007-0503-6

Keywords

Navigation