Skip to main content
Log in

Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Intracellular bacterial pathogens use secreted effector proteins to alter host cellular processes, with the goal of subverting host defenses and allowing the infection to progress. One such pathogen, Legionella pneumophila, secretes ~300 proteins into its host to alter a number of pathways including intracellular trafficking, phosphoinositide metabolism, and cell signaling. The Legionella effector SidC was previously found to bind to PI(4)P and was responsible for the enrichment of ER proteins and ubiquitinated species on the Legionella-containing vacuoles. Through our recent work, we have discovered that SidC contains a unique N-terminal E3 ubiquitin ligase domain and a C-terminal novel PI(4)P-binding domain. Our results demonstrate that SidC serves to link two distinct cellular pathways, ubiquitin and phosphoinositide. However, how the ubiquitin ligase activity regulates host membrane trafficking events remains to be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alomairi J et al (2015) Alterations of host cell ubiquitination machinery by pathogenic bacteria. Front Cell Infect Microbiol 5:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Alli OAT et al (2000) Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect Immun 68(11):6431–6440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93(3):1019–1137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brombacher E et al (2009) Rab1 guanine nucleotide exchange factor SidM is a major phosphatidylinositol 4-phosphate-binding effector protein of Legionella pneumophila. J Biol Chem 284(8):4846–4856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cunha BA, Burillo A, Bouza E (2015) Legionnaires’ disease. Lancet. doi:10.1016/S0140-6736(15)60078-2

    PubMed  Google Scholar 

  • De Felipe KS et al (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4(8):e1000117

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657

    Article  PubMed  Google Scholar 

  • Dolinsky S et al (2014) The Legionella longbeachae Icm/Dot substrate SidC selectively binds phosphatidylinositol 4-phosphate with nanomolar affinity and promotes pathogen vacuole-endoplasmic reticulum interactions. Infect Immun 82(10):4021–4033

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao L-Y, Kwaik YA (2000) The modulation of host cell apoptosis by intracellular bacterial pathogens. Trends Microbiol 8(7):306–313

    Article  CAS  PubMed  Google Scholar 

  • Gazdag EM et al (2014) The structure of the N-terminal domain of the Legionella protein SidC. J Struct Biol 186(1):188–194

    Article  CAS  PubMed  Google Scholar 

  • Gorvel JP, Moreno E (2002) Brucella intracellular life: from invasion to intracellular replication. Vet Microbiol 90(1):281–297

    Article  CAS  PubMed  Google Scholar 

  • Havey JC, Roy CR (2015) Toxicity and SidJ-mediated suppression of toxicity require distinct regions in the SidE family of legionella pneumophila effectors. Infect Immun 83(9):3506–3514

    Article  CAS  PubMed  Google Scholar 

  • Hicks SW, Galán JE (2010) Hijacking the host ubiquitin pathway: structural strategies of bacterial E3 ubiquitin ligases. Curr Opin Microbiol 13(1):41–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hilbi H (2006) Modulation of phosphoinositide metabolism by pathogenic bacteria. Cell Microbiol 8(11):1697–1706

    Article  CAS  PubMed  Google Scholar 

  • Hilbi H, Weber S, Finsel I (2011) Anchors for effectors: subversion of phosphoinositide lipids by Legionella. Front Microbiol 2:91

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Horenkamp FA et al (2014) Legionella pneumophila subversion of host vesicular transport by SidC effector proteins. Traffic 15(5):488–499

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu F et al (2012) Structural basis for substrate recognition by a unique Legionella phosphoinositide phosphatase. Proc Natl Acad Sci 109(34):13567–13572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsu F et al (2014) The Legionella effector SidC defines a unique family of ubiquitin ligases important for bacterial phagosomal remodeling. Proc Natl Acad Sci 111(29):10538–10543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubber A, Roy CR (2010) Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26:261–283

    Article  CAS  PubMed  Google Scholar 

  • Huibregtse J, Rohde JR (2014) Hell’s BELs: bacterial E3 ligases that exploit the eukaryotic ubiquitin machinery. PLoS Pathog 10(8):e1004255

    Article  PubMed Central  PubMed  Google Scholar 

  • Ingmundson A et al (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450(7168):365–369

    Article  CAS  PubMed  Google Scholar 

  • Isberg RR, O’Connor TJ, Heidtman M (2009) The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7(1):13–24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong KC, Sexton JA, Vogel JP (2015) Spatiotemporal regulation of a Legionella pneumophila T4SS substrate by the Metaeffector SidJ. PLoS Pathog 11(3):e1004695

    Article  PubMed Central  PubMed  Google Scholar 

  • Knodler LA, Steele-Mortimer O (2003) Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4(9):587–599

    Article  CAS  PubMed  Google Scholar 

  • Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229

    Article  CAS  PubMed  Google Scholar 

  • Kubori T et al. (2010) Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 6(12):e1001216

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo X et al (2015) Structure of the Legionella virulence factor, SidC reveals a unique PI (4) P-specific binding domain essential for its targeting to the bacterial phagosome. PLoS Pathog 11(6):e1004965

    Article  PubMed Central  PubMed  Google Scholar 

  • Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125(3):531–537

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murata T et al (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8(9):971–977

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M et al (2005) Escape of intracellular Shigella from autophagy. Science 307(5710):727–731

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta Mol Cell Res 1695(1):55–72

  • Pizarro-Cerdá J, Cossart P (2004) Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 6(11):1026–1033

    Article  PubMed  Google Scholar 

  • Ragaz C et al (2008) The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol 10(12):2416–2433

    Article  CAS  PubMed  Google Scholar 

  • Rotin D, Kumar S (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10(6):398–409

    Article  CAS  PubMed  Google Scholar 

  • Russell DG, Mwandumba HC, Rhoades EE (2002) Mycobacterium and the coat of many lipids. J Cell Biol 158(3):421–426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toulabi L et al (2013) Identification and structural characterization of a Legionella phosphoinositide phosphatase. J Biol Chem 288(34):24518–24527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Varshavsky A (2012) The ubiquitin system, an immense realm. Annu Rev Biochem 81:167–176

    Article  CAS  PubMed  Google Scholar 

  • Weber SS et al (2006) Legionella pneumophila exploits PI (4) P to anchor secreted effector proteins to the replicative vacuole. PLoS Pathog 2(5):e46

    Article  PubMed Central  PubMed  Google Scholar 

  • Weber SS, Ragaz C, Hilbi H (2009) Pathogen trafficking pathways and host phosphoinositide metabolism. Mol Microbiol 71(6):1341–1352

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Luo Z-Q (2013) Cell biology of infection by Legionella pneumophila. Microbes Infect 15(2):157–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) Grants R01-GM094347 (Y.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Mao.

Additional information

Communicated by M. Kupiec.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasilko, D.J., Mao, Y. Exploiting the ubiquitin and phosphoinositide pathways by the Legionella pneumophila effector, SidC. Curr Genet 62, 105–108 (2016). https://doi.org/10.1007/s00294-015-0521-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-015-0521-y

Keywords

Navigation