Current Genetics

, Volume 58, Issue 3, pp 165–177

Genome-wide analysis of cell wall-related genes in Tuber melanosporum

Authors

    • Istituto per la Protezione delle Piante del CNR, UOS Torino
    • Dipartimento di Biologia VegetaleUniTO
  • Fabiano Sillo
    • Istituto per la Protezione delle Piante del CNR, UOS Torino
    • Dipartimento di Biologia VegetaleUniTO
  • Annegret Kohler
    • UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes
  • Georg Schneider
    • Bioinformatics InstituteA*Star
  • Antonella Faccio
    • Istituto per la Protezione delle Piante del CNR, UOS Torino
    • Dipartimento di Biologia VegetaleUniTO
  • Emilie Tisserant
    • UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes
  • Francis Martin
    • UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes
  • Paola Bonfante
    • Istituto per la Protezione delle Piante del CNR, UOS Torino
    • Dipartimento di Biologia VegetaleUniTO
Research Article

DOI: 10.1007/s00294-012-0374-6

Cite this article as:
Balestrini, R., Sillo, F., Kohler, A. et al. Curr Genet (2012) 58: 165. doi:10.1007/s00294-012-0374-6

Abstract

A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.

Keywords

Tuber melanosporum Fungal genome Cell wall Ectomycorrhizae Symbiotic interactions

Supplementary material

294_2012_374_MOESM1_ESM.doc (56 kb)
Table S1 (DOC 55 kb)
294_2012_374_MOESM2_ESM.doc (235 kb)
Table S2 (DOC 235 kb)
294_2012_374_MOESM3_ESM.doc (38 kb)
Table S3 (DOC 38 kb)
294_2012_374_MOESM4_ESM.pdf (52 kb)
Table S4. GPI-prediction by using the fungal-specific big-PI algorithm (Eisenhaber et al. 2004) and checking for a predicted signal peptide (Bendtsen et al. 2004). There is experimental evidence for alternative or secondary GPI-anchor attachment sites (Eisenhaber et al. 1999). As such, the predictor reports a main and a secondary site (1: and 2:), each one classified with a letter (P, predicted; S, twilight zone prediction; I, physical properties are not right, but profile matches; N, neither physical properties nor profile matches). The best hit is shown first and is either P or S: if the first one is P, the second one can be P, S or N, or if the first one is S it can be S, I or N. An additional step to check for potential transmembrane domains (TM) in the mature protein has been performed. (PDF 52 kb)
294_2012_374_MOESM5_ESM.xls (36 kb)
Table S5. Expression data for the GPI-anchored protein subset. The individual sheets contain the array and the Solexa/Illumina data as explained in the Supplemental file. (XLS 36 kb)

Copyright information

© Springer-Verlag 2012