, Volume 44, Issue 2, pp 95-103
Date: 19 Aug 2003

Expression profiles of pea pathogenicity (PEP) genes in vivo and in vitro, characterization of the flanking regions of the PEP cluster and evidence that the PEP cluster region resulted from horizontal gene transfer in the fungal pathogen Nectria haematococca

Abstract

A cluster of pathogenicity genes (PEP1, PEP2, PDA1, PEP5), termed the pea pathogenicity (PEP) cluster and located on a 1.6-Mb conditionally dispensable (CD) chromosome, was identified in the fungal pathogen Nectria haematococca. Studies determined that the expression of PDA1 is induced in both infected pea tissues and in vitro by the phytoalexin pisatin. The present study reports the use of real-time quantitative RT-PCR to monitor the expression of each PEP gene and PDA1. In mycelia actively growing in culture, the mRNA levels of PEP1, PEP5 and PDA1 were very low and the PEP2 transcript was undetectable. In planta, PDA1 and PEP2 were strongly induced, while PEP1 and PEP5 were moderately induced. Starvation slightly enhanced the expression of PEP1, PDA1 and PEP5, while the expression of PEP2 remained undetectable. Exposure to pisatin in culture stimulated the expression of PDA1 and each PEP gene to a similar level as occurred in planta. In addition, all four pathogenicity genes displayed similar temporal patterns of expression in planta and in vitro, consistent with a coordinated regulation of these genes by pisatin during pea pathogenesis. In the flanking regions of the PEP cluster, six open reading frames (ORFs) were identified and all were expressed during infection of pea. Comparison of the codon preferences of these ORFs and seven additional genes from CD chromosomes with the codon preferences of 21 genes from other chromosomes revealed there is a codon bias that correlates with the source of the genes. This difference in codon bias is consistent with the hypothesis that genes on the CD chromosome have a different origin from genes of normal chromosomes, suggesting that horizontal gene transfer may have played a role in the evolution of pathogenesis in N. haematococca.

Communicated by J. Heitman