Skip to main content
Log in

Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The synthesis, spectroscopic characterization, and antimicrobial efficiency of gold and silver nanoparticles embedded in novel amphiphilic comb-type graft copolymers having good film-forming properties have been described. Amphiphilic comb-type graft copolymers were synthesized by the reaction of chlorinated polypropylene (PP) (M w = 140,000 Da) with polyethylene glycol (PEG) (M n  = 2,000 Da) at different molar ratios. Metal nanoparticles embedded graft copolymers were prepared by reducing solutions of the salts of silver or gold and the copolymer in tetrahydrofuran. The optical properties of the metal nanoparticle embedded copolymers were determined by using UV–visible spectroscopy. Surface plasmon resonance (SPR) of the gold and silver nanoparticle embedded copolymers in toluene was observed at a maximum wavelength (λmax) of 428 and 551 nm in the UV–VIS absorption spectra, respectively. The average particle diameters of the gold and silver nanoparticles were found to be 50 nm from the high resolution scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Amphiphilic polymer films containing silver and gold nanoparticles were found to be highly antimicrobial by virtue of their antiseptic properties to Escherichia coli and Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239

    Article  CAS  Google Scholar 

  2. Millstone JE, Hurst SJ, Metraux GS, Cutler JI, Mirkin CA (2009) Colloidal gold and silver triangular nanoprisms. Small 5:646–664

    Article  CAS  Google Scholar 

  3. Shan J, Heikki T (2007) Recent advances in polymer protected gold nanoparticles: synthesis, properties and applications. Chem Commun 4580–4598

  4. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  Google Scholar 

  5. Oren R, Liang Z, Barnard JS, Warren SC, Wiesner U, Huck WTS (2009) Organization of nanoparticles in polymer brushes. J Am Chem Soc 131:1670–1671

    Article  CAS  Google Scholar 

  6. Kim BJ, Bang J, Hawker C, Kramer EJ (2006) Effect of areal density of polymer chains on gold nanoparticles on nanoparticle location in a block copolymer template. Macromolecules 39:4108–4114

    Article  CAS  Google Scholar 

  7. Warren CS, Messina LC, Slaughter LS, Kamperman M, Zhou Q, Gruner SM, DiSalvo FJ, Wiesner U (2008) Ordered mesoporous materials from metal nanoparticle–block copolymer self-assembly. Science 320:1748–1752

    Article  CAS  Google Scholar 

  8. Chiu JJ, Kim BJ, Kramer EJ, Pine DJ (2005) Control of nanoparticle location in block copolymers. J Am Chem Soc 127:5036–5037

    Article  CAS  Google Scholar 

  9. Aymonier C, Schlotterbeck U, Antonietti L, Zacharias P, Thomann R, Tiler JG, Mecking S (2002) Hybrids of silver nanoparticles with amphiphilic hyperbranched macromolecules exhibiting antimicrobial properties. Chem Commun 3018–3019

  10. Mallia VA, Vemula PK, John G, Kumar A, Ajayan PM (2007) In situ synthesis and assembly of gold nanoparticles embedded glass forming liquid crystals. Angew Chem Int Ed 46:3269–3274

    Article  CAS  Google Scholar 

  11. Jin R, Cao YC, Hao E, Métraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425(6957):487–490

    Article  CAS  Google Scholar 

  12. Jin R, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG (2001) Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901–1903

    Article  CAS  Google Scholar 

  13. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  14. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  15. Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664

    Article  CAS  Google Scholar 

  16. Novak JP, Feldheim DL (2000) Assembly of phenylacetylene-bridged silver and gold nanoparticle arrays. J Am Chem Soc 122:3979–3980

    Article  CAS  Google Scholar 

  17. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305

    Article  CAS  Google Scholar 

  18. Yang S, Zhang T, Zhang L, Wang S, Yang Z, Ding B (2006) Continuous synthesis of gold nanoparticles and nanoplates with controlled size and shape under UV irradiation. Colloids Surf A 296:37–44

    Article  Google Scholar 

  19. Grace AN, Pandian K (2006) One pot synthesis of polymer protected gold nanoparticles and nanoprisms in glycerol. Colloids Surf A 290:138–142

    Article  CAS  Google Scholar 

  20. Liu Q, Liu H, Zhou Q, Liang Y, Yin G, Xu Z (2006) Synthesis of nearly monodispersive gold nanoparticles by a sodium diphenylamine sulfonate reduction process. J Mater Sci 41:3657–3662

    Article  CAS  Google Scholar 

  21. Eustis S, Hsu HY, El-Sayed MA (2005) Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism. J Phys Chem B 109:4811–4815

    Article  CAS  Google Scholar 

  22. Mayer ABR, Mark JE (1998) Colloidal gold nanoparticles protected by water-soluble homopolymers and random copolymers. Eur Polym J 34:103–108

    Article  CAS  Google Scholar 

  23. Dong H, Fey E, Gandelman A, Jones WE Jr (2006) Synthesis and assembly of metal nanoparticles on electrospun poly(4-vinylpyridine) fibers and poly(4-vinylpyridine) composite fibers. Chem Mater 18:2008

    Article  CAS  Google Scholar 

  24. Longenberger L, Mills G (1995) Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers. J Phys Chem 99:475–478

    Article  CAS  Google Scholar 

  25. Park S, Lim JH, Chung SW, Mirkin CA (2004) Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303:348–451

    Article  CAS  Google Scholar 

  26. Sakamoto M, Tachikawa T, Fujitsuka M, Majima T (2006) Acceleration of laser-induced formation of gold nanoparticles in a poly(vinyl alcohol) film. Langmuir 22:6361–6366

    Article  CAS  Google Scholar 

  27. Bhattacharjee RR, Chakraborty M, Mandal TK (2006) Reversible association of thermoresponsive gold nanoparticles: polyelectrolyte effect on the lower critical solution temperature of poly(vinyl methyl ether). J Phys Chem B 110:6768–6775

    Article  CAS  Google Scholar 

  28. Hussain I, Brust M, Papworth AJ, Cooper AI (2003) Preparation of acrylate-stabilized gold and silver hydrosols and gold-polymer composite films. Langmuir 19:4831–4835

    Article  CAS  Google Scholar 

  29. Wang B, Chen K, Jiang S, Reincke F, Tong W, Wang D, Gao C (2006) Chitosan-mediated synthesis of gold nanoparticles on patterned poly(dimethylsiloxane) surfaces. Biomacromolecules 7:1203–1209

    Article  CAS  Google Scholar 

  30. Note C, Kosmella S, Koetz J (2006) Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloids Surf A 290:150–156

    Article  CAS  Google Scholar 

  31. Sun X, Dong S, Wang E (2006) One-step polyelectrolyte-based route to well-dispersed gold nanoparticles: synthesis and insight. Mater Chem Phys 96:29–33

    Article  CAS  Google Scholar 

  32. Chen H, Wang Y, Dong S, Wang E (2006) One-step preparation and characterization of PDDA-protected gold nanoparticles. Polymer 47:763–766

    Article  CAS  Google Scholar 

  33. Ishii T, Otsuka H, Kataoka K, Nagasaki Y (2004) Preparation of functionally PEGylated gold nanoparticles with narrow distribution through autoreduction of auric cation by r-biotinyl-PEG-block-[poly(2-(N,N-dimethylamino)ethyl methacrylate)]. Langmuir 20:561–564

    Article  CAS  Google Scholar 

  34. He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15:4401–4406

    Article  CAS  Google Scholar 

  35. Jeon HJ, Go DH, Choi SY, Kim KM, Lee JY, Choo DJ, Yoo HO, Kim JM, Kim J (2008) Synthesis of poly(ethylene oxide)-based thermoresponsive block copolymers by RAFT radical polymerization and their uses for preparation of gold nanoparticles. Colloids Surf A Physicochem Eng Asp 317:496–503

    Article  CAS  Google Scholar 

  36. Warshawsky A, Kalir R, Deshe A, Berkovitz H, Patchornik A (1979) Polymeric pseudocrown ethers. 1. synthesis and complexation with transition metal anions. J Am Chem Soc 101:4249–4258

    Article  CAS  Google Scholar 

  37. Gitsov I, Wooley KL, Hawker CJ, Ivanova PT, Frechet JMJ (1993) Synthesis and properties of novel linear dendritic block-copolymers—reactivity of dendritic macromolecules toward linear-polymers. Macromolecules 26:5621–5627

    Article  CAS  Google Scholar 

  38. Förster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217

    Article  Google Scholar 

  39. Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H (2001) Polymers with complex architecture by living anionic polymerization. Chem Rev 101:3747–3792

    Article  CAS  Google Scholar 

  40. Alexandridis P, Lindman B (eds) (2000) Amphiphilic block copolymers. Elsevier, Amsterdam

    Google Scholar 

  41. Kenawy ER, Worley SD, Broughton R (2007) The chemistry and applications of antimicrobial polymers: a state-of-the-art review. Biomacromolecules 8:1359–1384

    Article  CAS  Google Scholar 

  42. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  43. Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    Article  CAS  Google Scholar 

  44. Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L (2003) Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion. Langmuir 19:6912–6921

    Article  CAS  Google Scholar 

  45. Metraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17:412–415

    Article  CAS  Google Scholar 

  46. Haldar J, An D, Cienfuegos LA, Chen J, Klibanov AM (2006) Polymeric coatings that inactivate both influenza virus and pathogenic bacteria. PNAS 21:17667–17671

    Article  Google Scholar 

  47. Zhu MQ, Wang LQ, Exarhos GJ, Li ADQ (2004) Thermosensitive gold nanoparticles. J Am Chem Soc 126:2656–2657

    Article  CAS  Google Scholar 

  48. Diez I, Pusa M, Kulmala S, Jiang H, Walther A, Goldmann AS, Müller AHE, Ikkala O, Ras RHA (2009) Color tunability and electrochemiluminescence of silver nanoclusters. Angew Chem Int Ed 48:2122–2125

    Article  CAS  Google Scholar 

  49. Dong B, Jiang H, Manolache S, Wong ACL, Denes FS (2007) Plasma-mediated grafting of poly(ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates. Langmuir 23:7306–7313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from TÜBİTAK-Ankara (grant# 108T423) and from the Commission of Zonguldak Karaelmas University Scientific Research Projects (grant# 2008-70-01-01 and grant# 2008-13-03-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki Hazer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalaycı, Ö.A., Cömert, F.B., Hazer, B. et al. Synthesis, characterization, and antibacterial activity of metal nanoparticles embedded into amphiphilic comb-type graft copolymers. Polym. Bull. 65, 215–226 (2010). https://doi.org/10.1007/s00289-009-0196-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-009-0196-y

Keywords

Navigation