Skip to main content
Log in

Diameter-Controlled Synthesis of Polyaniline Nanofibers

  • Original Article
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Various diameters of polyaniline (PANI) nanofibers were easily made by varying the sweep rate in the electrochemical polymerization of the aniline monomer. At a sweep rate of 5 mV/s, the PANI nanofibers have an average diameter of 450 nm with a median of 440 nm. The fibers are short, on the order of a few microns in length, and exhibit a branched geometry. Increasing the sweep rate to 50 mV/s produced longer nanofibers with a smaller average diameter of 200 nm. Nanofibers synthesized at 100 mV/s were noted to be smaller with an average and median diameter of 100 nm. These results illustrate the ease in which the morphology of nanostructured PANI can be altered and indicate that the method has the potential to create multi-diameter fibers or mixed-morphology materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Collins PG, Zettl A, Bando H, Thess A, Smalley RE (1997) Science 278:100

    Article  CAS  Google Scholar 

  2. Iijima S, Ichihashi T (1993) Nature 363:603

    Article  CAS  Google Scholar 

  3. Hu J, Odom TW, Lieber CM (1999) Acc Chem Res 32:435

    Article  CAS  Google Scholar 

  4. Kroto H, Heath WJR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  5. Donhauser ZJ, Mantooh BA, Kelly KF, Bumm LA, Monnell JD, Stapleton JJ, Price DW, Jr Rawlett AM, Allara DL, Tour JM, Weiss PS (2001) Science 292:2303

    Article  CAS  Google Scholar 

  6. Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252

    Article  CAS  Google Scholar 

  7. Hopkins AR, Huang J, Lipeles RA, Kao WH, Kaner RB (2003) Polymer Preprints 442:176

    Google Scholar 

  8. Liu H, Kameoka J, Czaplewski DA, Craighead HG (2004) Nano Lett 4:671

    Article  CAS  Google Scholar 

  9. Huang J, Virji S, Weiller BH, Kaner RB (2003) J Am Chem Soc 125:314

    Article  CAS  Google Scholar 

  10. Huang J, Kaner RB (2004) J Am Chem Soc 126:851

    Article  CAS  Google Scholar 

  11. Virji S, Huang J, Kaner RB, Weiller BH (2004) Nano Lett 4:491

    Article  CAS  Google Scholar 

  12. Martin CR (1995) Acc Chem Res 28:61

    Article  CAS  Google Scholar 

  13. Menon VP, Lei J, Martin CR (1996) Chem Mater 8:2382

    Article  CAS  Google Scholar 

  14. Choi S-J, Park S-M (2000) Adv Mat 12:1547

    Article  CAS  Google Scholar 

  15. Jan J, Bae J, Lim B (2006) Chem Commun 1622

  16. Hayes WA, Shannon C (1998) Langmuir 14:1099

    Article  CAS  Google Scholar 

  17. Porter LA, Ribbe AE, Buriak JM (2003) Nano Letters 3:1043

    Article  CAS  Google Scholar 

  18. MacDiarmid AG, Jones WE, Norris ID, Gao J, Johnson AT, Pinto NJ, Hone J, Han B, Ko FK, Okuzaki H, Llaguno M (2001) Synth Met 119:27

    Article  CAS  Google Scholar 

  19. Liu J, Wan MJ (2001) Mater Chem 11:404

    Article  CAS  Google Scholar 

  20. Ding H, Wan M, Wei Y (2007) Adv Mater 19:465

    Article  CAS  Google Scholar 

  21. Rhiou CN, Lee LJ, Epstion AJ (2007) Chem Mater 19:3589

    Article  Google Scholar 

  22. Choi S-J, Park S-M J (2002) Electrochem Soc 149:E26

    Article  CAS  Google Scholar 

  23. Zhou HH, Jiao SQ, Chen JH, Wei WZ, Kuang YF (2004) Thin Solid Films 450:233

    Article  CAS  Google Scholar 

  24. Rubinstein I, Rishpon J, Sabatani E, Redondo A, Gottesfeld SJ (1990) Am Chem Soc 112:6135

    Article  CAS  Google Scholar 

  25. Huang W-S, Humphrey BD, MacDiarmid AG (1986) J Chem Soc Faraday Trans 1 82:2385

    Article  CAS  Google Scholar 

  26. Yonezawa S, Kanamura K, Takehara ZJ (1995) Electrochem Soc 142:3309

    Article  CAS  Google Scholar 

  27. Piranha solution consisted of 1:3 solution of 30% hydrogen peroxide (H2O2) and concentrated sulfuric acid (H2SO4) followed by a base treatment (H2O/NH4OH/H2O2) = 5:1:1

  28. Sawall DD, Villahermosa RM, Lipeles RA, Hopkins AR (2004) Chem Mater 16:1606

    Article  CAS  Google Scholar 

  29. Hayes WA, Shannon C (1996) Langmuir 12:3688

    Article  CAS  Google Scholar 

  30. Nanofiber diameters were determined to ± 25 nm by manual visual analysis of SEM images

  31. Huang J, Kaner RB (2004) Angew Chem Int Ed 43:5817

    Article  CAS  Google Scholar 

  32. Wei Z, Zhang Z, Wan M (2002) Langmuir 18:917

    Article  CAS  Google Scholar 

  33. Huang J, Kaner RB (2004) Angew Chem Int Ed 43:5817

    Article  CAS  Google Scholar 

  34. Rhiou CN, Lee LJ, Epstein AJ (2007) Chem Mater 19:3589

    Article  Google Scholar 

  35. Ding H, Wan M, Wei Y (2007) Adv Mater 19:465

    Article  CAS  Google Scholar 

  36. Nunziante P, Pistoia G (1989) Electrochem Acta 34:223

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, R.E., Ostrowski, A.D., Gran, D.E. et al. Diameter-Controlled Synthesis of Polyaniline Nanofibers . Polym. Bull. 61, 563–568 (2008). https://doi.org/10.1007/s00289-008-0983-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-008-0983-x

Keywords

Navigation