Skip to main content
Log in

Microwave-assisted synthesis of carboxymethylcellulose – based polymeric surfactants

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Carboxymethylcellulose (CMC, DSCM = 1) was partially hydrophobized in order to prepare polymeric surfactants by the transesterification reaction using the methyl ester of the fatty acid complex of rapeseed oil (MERO). The chemical modification was performed in different reaction media (i) DMF/TSA and (ii) H2O/DMF with and without K2CO3 as catalyst, at various reaction conditions and using microwave radiation with controlled power as heating source. The obtained MERO-hydrophobized CMC (MH-CMC) comprising mixed fatty acyl esters were characterized by FT-IR and NMR spectroscopic techniques, which indicated a very low degree of esterification (DS < 0.1). The derivatives showed, in spite of moderate surface tension-lowering effects, excellent emulsifying activity for ‘oil in water’ type emulsions as well as good performance properties including washing power and antiredeposition efficiency. The results suggested that surface-active MH-CMC derivatives can be prepared under microwave heating at reaction times in the range of several minutes, what is a great advantage in comparison to transesterification reactions lasting up to 6 h at conventional heating. The novel CMC esters represent biodegradable polymeric surfactants with potential applications in manufacture of consumer products and in industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feddersen RL, Thorp SN (1993) Sodium carboxymethylcellulose. In: Whistler RL and BeMiller JA (ed) Industrial Gums, Polysaccharides and their Derivatives, Academic Press, San Diego New York Boston, 537

  2. Vogt S, Klemm D, Heinze T (1996) Polym Bull 36:549

  3. Heinze T, Dicke R, Koschella A, Kull A, Klohr EA, Koch W (2000) Macromol Chem Phys 201:627

    Google Scholar 

  4. Charpentier D, Mocanu G, Carpov A, Chapelle S, Merle L, Muller G (1997) Carbohydr Polym 33:177

  5. Sroková I, Talaba P, Hodul P, Balažová A (1998) Tenside Surf Det 35:342

    Google Scholar 

  6. Cao Y, Li HL (2002) Eur Polym J 38:1457

    Google Scholar 

  7. Aburto J, Alric I, Borredon E (1999) Starch/Stärke 51:132

  8. Vaca-Garcia C, Thiebaud S, Borredon ME, Gozzelino G (1998) J Am Oil Chem Soc 75:315

    Google Scholar 

  9. Vaca-Garcia C, Borredon ME (1999) Bioresource Technol 70:135

  10. Neumannn U, Wiege B, Warwel S (2002) Starch/Stärke 54:449

  11. Latetin AI, Gal’braikh LS, Rogovin ZA (1968) Polym Sci USSR 10:761

  12. Rooney ML (1976) Polymer 17:555

    Google Scholar 

  13. Aburto J, Alric I, Borredon E (2005) Starch/Stärke 57:145

  14. Mormann W, Al-Higari M (2004) Starch/Stärke 56:118

  15. Žoldáková A, Sroková I, Sasinková V, Hirsch J, Ebringerová A (2005) Chem Pap 59:362

  16. Skalková P, Sroková I, Sasinková V, Ebringerová A (2006) Tenside Surf Det 43:137

    Google Scholar 

  17. Sroková I, Tomanová V, Ebringerová A, Maloviková A, Heinze T (2004) Macromol Mater Eng 289:63

    Google Scholar 

  18. Galema SA (1997) Chemical Society Reviews 26:233

    Google Scholar 

  19. Koroskenyi B, McCarthy SP (2002) J Polym Environ 10:93

    Google Scholar 

  20. Bogdal D, Penczek P, Pielichowski J, Prociak A (2003) Adv Polym Sci 163:194

    Google Scholar 

  21. Gourson C, Benhaddou R, Granet R, Krausz P, Saulnier L, Thibault JF (1999) Compt Rend Ac Sci, Ser. IIc, Chim 2:75

    Google Scholar 

  22. Lewandowicz G, Fornal J, Walkowski A, Maczynski M, Urbaniak G, Szymanska G (2000) Industrial Crops and Products 11:249

    Google Scholar 

  23. Satgé C, Verneuil B, Branland P, Granet R, Krausz P, Rozier J, Petit C (2002) Carbohydr Polym 49:373

  24. Antova G, Vasvasova P, Zlatanov M (2004) Carbohydr Polym 57:131

  25. Sroková I, Čížová A, Sasinková V, Hromádková Z, Ebringerová A (2006) Micowave-assisted transesterification of O-(carboxymethyl)starch. In: Pielichowski K (ed) Modern Polymeric Materials for Environmental Applications, Wydavnictwo DjaF, Krakow, vol. 2, pp 31-36

  26. Fang JM, Fowler PA, Tomkinson J, Hill CAS (2002) Carbohydr Polym 50:429

  27. Hromádková Z, Kováčiková J, Ebringerová A (1999) Ind Crops Prod 9:101

    Google Scholar 

  28. Sroková I, Ebringerová A, Heinze T (2001) Tenside Surf Det 38:277

    Google Scholar 

  29. Stüpel H (1997) Synthetische Wasch-und Reinigungsmittel. 1st edition, Konradin Verlag, Stuttgart

  30. Reuben J, Conner HT (1983) Carbohydr Res 115:1

  31. Grote C, Heinze T (2005) Cellulose 12:435

    Google Scholar 

  32. Kamide K, Okajima K, Kowasaka K, Matsui M (1987) Polym J 19:1405

  33. Singh V, Sethi R, Tewari A, Srivastava V, Sangh R (2003) Carbohydr Polym 54:523

  34. Dickinson E (1988). The role of hydrocolloids in stability of particulate dispersions and emulsions. In: Philipps GO, Wedlock O J, Williams PH (ed) Gums and Stabilisers for the Food industry. IRL Press, Oxford, vol 4, pp. 249-263

  35. Garti N, Leser ME (2001) Polym Adv Technol 12:123

    Google Scholar 

  36. Paik YH, Swift G (1995) Chem Ind 2:55

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimíra Tomanová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomanová, V., Pielichowski, K., Sroková, I. et al. Microwave-assisted synthesis of carboxymethylcellulose – based polymeric surfactants. Polym. Bull. 60, 15–25 (2008). https://doi.org/10.1007/s00289-007-0834-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-007-0834-1

Keywords

Navigation