Skip to main content
Log in

Fungicidal and Insecticidal Activity of O-Acyl Chitosan Derivatives

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

A series of O-(acyl) chitosan (OAC) derivatives with a degree of substitution (DS) between 0.02 and 0.28 were synthesized by reaction of alkanoic acid derivatives with chitosan in the presence of H2SO4 as a catalyst. The reaction was performed at 80 °C for 4 h with different mol ratios of alkanoic acids to chitosan. The synthesized compounds were analyzed by 1H- and 13C-NMR spectroscopy. A high DS was obtained with O-(butyroyl) chitosan (DS 0.28) at a mol ratio of (1:5) chitosan to butyric acid. Their fungicidal activity against the grey mould Botrytis cinerea (Leotiales: Sclerotiniaceae) and the rice leaf blast pathogen Pyricularia grisea (Teleomorph: Magnaportha grisea) has been evaluated. O-(decanoyl) chitosan at mol ratio of 1:2 (chitosan to decanoic acid) was the most active compound against B. cinerea (EC50=1.02 g.l-1) and O-(hexanoyl) chitosan displayed the highest activity against P. grisea (EC50=1.11 g.l-1). It has been mentioned that some derivatives also repressed spore formation at rather high concentrations (1.0, 2.0 and 5.0 g.l-1). The insecticidal activity has been screened at 5 g.kg-1 artificial diet against the larvae of the cotton leafworm Spodoptera littoralis (Lepidoptera: Noctuidae). The results revealed that all of the synthesized derivatives showed high inhibition of growth of the larvae of S. littoralis compared to chitosan (7% growth inhibition) and the most active one was O-(decanoyl) chitosan (64% growth inhibition) after 5 days of feeding on treated artificial diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Francis SJK, Matthew HWT (2000) Biomat 21: 2589

    Google Scholar 

  2. Ravi Kumar NVM (2000) React Funct Polym 46: 1

  3. Sigh DK, Ray AR (2000) Macromol Chem Phys C40: 69

  4. Li Q, Dum ET, Grandmaison EW, Goodman MFA (1992) J Bioact Compat Polym 7: 370

    Google Scholar 

  5. Chandy T, Sharma CP (1990) Biomat Art Cells Art Org 18: 1

  6. Marguerite R, Pham LD, Claude G (1992) Int J Biol Macromol 14: 122

    Google Scholar 

  7. Muzzarelli RAA, Tanfani F (1985) Carbohydr Polym 5: 297

  8. Kas HSJ (1997) Microencapsulation 14: 689

    Google Scholar 

  9. Kubota B, Kikuchi Y In Polysaccharides: Structural Diversity and Functional Versatility; Dumitriu S, Ed Marcel Dekker New York (1998) p 595

  10. Riccardo A, Muzzarelli A (1988) Carbohydr Polym 8: 1

  11. Lillo LE, Matsuhiro B (1997) Carbohydr Polym 34:397

  12. Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yajima H, Yamamori N, Ichinose Y, Sunamoto J, Aiba S (2003) Carbohydr Res 338: 557

  13. Skorik Y, Gomes CAR, Vasconcelos TSD, Yatluk YG (2003) Carbohydr Res 338: 271

    Google Scholar 

  14. Holme KR, Perlin AS (1997) Carbohydr Res 302: 173

  15. Focher B, Massoli A, Torri G, Gervasini A, Morazzoni F (1986) Macromol Chem 187: 2609

  16. Grant S, Blair H, Mckay G (1988) Polym Commun 29: 342

  17. Heras A, Rodriguez NM, Ramos VM, Agullo E (2001) Carbohydr Polym 44: 1

  18. Ramos VM, Rodriguez NM, Diaz MF, Rodriguez MS, Heras A, Agullo E (2003) Carbohydr Polym 52: 39

  19. Rabea EI, Badawy MEI, Rogge TM, Stevens CV, Smagghe G, Höfte M, Steurbaut W In Proceedings of the 9th International Chitin-Chitosan Conference, Montereal, Québec, Canada 2003, p 103

  20. Wenming X, Peixin X, Qin L (2002) Carbohydr Polym 50: 35

  21. Zhishen J, Dongfen S, Weiliang X (2001) Carbohydr Res 333: 1

  22. Song Y, Onishi H, Nagai T (1992) Chem Pharm Bull 40: 2822

    Google Scholar 

  23. Zhang C, Qineng P, Hongjuan Z, Jian S (2003) Eur Polym J 39: 1629

    Google Scholar 

  24. Rabea EI, Badawy MEI, Stevens CV, Smagghe G, Steurbaut W (2003) Biomacromol 4: 1457

  25. Badawy MEI, Rabea EI, Rogge TM, Stevens CV, Smagghe G, Steurbaut W, Höfte M (2004) Biomacromol 5: 589

  26. Rabea EI, Badawy MEI, Rogge TM, Stevens CV, Smagghe G, Höfte M, Steurbaut W In Proceedings of the 9th International Chitin-Chitosan Conference, Montereal, Québec, Canada 2003, p 104

  27. Rabea EI, Badawy MEI, Rogge TM, Stevens CV, Smagghe G, Hofte M, Steurbaut W (2003) Comm Agric Appl Bio Sci (Ghent University) 68: 135

  28. Rabea EI, Badawy MEI, Rogge TM, Stevens CV, Smagghe G, Höfte M, Steurbaut W (2004) Advances in Chitin Sci 7: 231

    Google Scholar 

  29. Liu XF, Guan YL, Yang DZ, Li Z, Yao K,D (2001) J Appl Polym Sci 79: 1324

  30. Cabrera G, Casals P, Cardenas G, Taboada E, Neira P (2001) In Proc 10th IUPAC Int Congress Chem Crop Protec 1: 227

  31. Cardenas G, Paredes JC, Cabrera G, Casals PJ (2002) Appl Polym Sci 86: 2742

    Google Scholar 

  32. Casals P, Cardenas G, Galvez G, Villar A, Cabrera G (2002) In Proc 10th IUPAC Int Congress Chem Crop Protec 1: 228

  33. Placencia J, Rudolph A, Cabrera G, Cardenas G, Parra C (2003) Bull Environ Contam Toxicol 70: 53

    Google Scholar 

  34. Zhang MI, Tan T, Yuan H, Rui CJ (2003) Bioactive Compatible Polym 18: 391

    Google Scholar 

  35. Stossel P, Leuba JL (1984) J Phytopathol 111: 82

    Google Scholar 

  36. El Ghaouth EA, Arul J, Grenier J, Asselin A (1992) Phytopathol 82: 398

    Google Scholar 

  37. Finney DJ Probit analysis. 3rd Ed. Cambridge University Press Cambridge (1971) p 318

  38. Smagghe G, Carton B, Decombel L, Tirry L (2001) Arch Insect Biochem Physiol 46: 127

    Google Scholar 

  39. Smagghe G, Decombel L, Carton B, Voigt B, Adam G, Tirry L (2002) Insect Biochem Mol Biol 32: 199

    Google Scholar 

  40. Kim JH, Lee YM (1993) Polym 34: 1952

  41. Jin CW, Kim CH, Choi KS (1995) J Korean Ind Eng Chem 6: 482

    Google Scholar 

  42. Sashiwa H, Norioki K, Atsuyoshi N, Einosuke M, Noboru Y, Hong Z, Hiroshi N, Yoshihiko O, Hiroyuki S, Yoshihiro S, Sei-ichi A (2002) Biomacromol 3: 1120

  43. Sashiwa H, Norioki K, Atsuyoshi N, Einosuke M, Noboru Y, Sei-ichi A (2002) Biomacromol 3: 1126

  44. Seo T, Ikeda Y, Torada K, Nakata Y, Shimomura Y (2001) Chitin Chitosan Res 7: 212

    Google Scholar 

  45. Inoue K, Yoshizawa K, Othto K, Nakagawa H (2001) Chem Lett 30: 698

  46. Nishimura S, Kohgo O, Kurita K, Vittavatvong C, Kuwahara K (1990) Chem Lett 19: 243

  47. Du J, Gemma H, Iwahori S (1997) J Jpn Soc Hortic Sci 66: 15

    Google Scholar 

  48. El Ghaouth A, Arul J, Wilson C, Asselin A, Benhamou N (1994) Mol Plant Pathol 44: 417

    Google Scholar 

  49. Oh SK, Cho D, Yu SH (1998) Korean J Plant Pathol 14: 278

    Google Scholar 

  50. Benhamou N (1996) Trends Plant Sci 1: 233

  51. Debieu D, Bach J, Hugon M, Malosse C, Leroux P (2001) Pest Manag Sci 57: 1067

    Google Scholar 

  52. Allan CR, Hadwiger LA (1979) Exp Mycol 3: 285

  53. Hon DNS In: Polysaccharides in Medicinal Application; Dumitri S Ed Marcel Dekker: New York (1996) p 631

  54. Yokoi H, Aratake T, Nishio S, Hirose J, Hayashi S, Takasaki Y (1998) J Ferment Bioeng 85: 246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badawy, M., Rabea, E., Rogge, T. et al. Fungicidal and Insecticidal Activity of O-Acyl Chitosan Derivatives. Polym. Bull. 54, 279–289 (2005). https://doi.org/10.1007/s00289-005-0396-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-005-0396-z

Keywords

Navigation