Journal of Mathematical Biology

, Volume 70, Issue 5, pp 1015–1063

Integral control for population management

  • Chris Guiver
  • Hartmut Logemann
  • Richard Rebarber
  • Adam Bill
  • Brigitte Tenhumberg
  • Dave Hodgson
  • Stuart Townley
Article

DOI: 10.1007/s00285-014-0789-4

Cite this article as:
Guiver, C., Logemann, H., Rebarber, R. et al. J. Math. Biol. (2015) 70: 1015. doi:10.1007/s00285-014-0789-4

Abstract

We present a novel management methodology for restocking a declining population. The strategy uses integral control, a concept ubiquitous in control theory which has not been applied to population dynamics. Integral control is based on dynamic feedback—using measurements of the population to inform management strategies and is robust to model uncertainty, an important consideration for ecological models. We demonstrate from first principles why such an approach to population management is suitable via theory and examples.

Keywords

Integral control PI control Population ecology  Conservation Management 

Mathematics Subject Classification (2010)

93C55 93D15 93C40 92D25 92D40 

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chris Guiver
    • 1
  • Hartmut Logemann
    • 2
  • Richard Rebarber
    • 3
  • Adam Bill
    • 2
  • Brigitte Tenhumberg
    • 4
  • Dave Hodgson
    • 5
  • Stuart Townley
    • 1
  1. 1.Environment & Sustainability Institute, College of Engineering, Mathematics and Physical SciencesUniversity of ExeterPenryn Campus, CornwallUK
  2. 2.Department of Mathematical SciencesUniversity of BathBathUK
  3. 3.Department of MathematicsUniversity of Nebraska-LincolnLincolnUSA
  4. 4.School of Biological SciencesUniversity of Nebraska-LincolnLincolnUSA
  5. 5.Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenryn Campus, CornwallUK