Skip to main content
Log in

DNA topology in chromosomes: a quantitative survey and its physiological implications

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Using a simple geometric model, we propose a general method for computing the linking number of the DNA embedded in chromatin fibers. The relevance of the method is reviewed through the single molecule experiments that have been performed in vitro with magnetic tweezers. We compute the linking number of the DNA in the manifold conformational states of the nucleosome which have been evidenced in these experiments and discuss the functional dynamics of chromosomes in the light of these manifold states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The 2002 work of Starostin has been published in 2005 (Starostin 2005), but the preprint version contains more material than its published version, and in particular a whole section devoted to the writhe additivity, to which we refer in our paper.

  2. Compare with Eq. 16 in Starostin (2005). Incidentally, we point out an error in the round term of that formula, that should be rewritten as \(+round(aL/2\pi )\).

  3. We note that the same viewpoint \(F\) was introduced by Crick (1976).

  4. The fact that in the skeleton structure the tangent vector presents discontinuous points may appear as a limitation to the application of the theorem, but this problem may be easily solved by defining a correct limiting procedure (Starostin 2005)

References

  • Ball P (2008) Pulling our strings. Chemistry, World May:50–54

  • Bancaud A, Conde e Silva N, Barbi M, Wagner G, Allemand J, Mozziconacci J, Lavelle C, Croquette V, Victor JM, Prunell A, Viovy J (2006) Structural plasticity of single chromatin fibers revealed by torsional manipulation. Nat Struct Mol Biol 13:444–450

    Article  Google Scholar 

  • Bancaud A, Wagner G, Conde E, Lavelle C, Wong H, Mozziconacci J, Barbi M, Sivolob A, Le Cam E, Mouawad L, Viovy J, Victor J, Prunell A (2007) Nucleosome chiral transition under positive torsional stress in single chromatin fibers. Mol Cell 27:135–147

    Article  Google Scholar 

  • Barbi M, Mozziconacci J, Victor JM (2005) How the chromatin fiber deals with topological constraints. Phys Rev E 71(031):910

    MathSciNet  Google Scholar 

  • Bécavin C, Barbi M, Victor JM, Lesne A (2010) Transcription within condensed chromatin: Steric hindrance facilitates elongation. Biophysical J 98:824–833

    Article  Google Scholar 

  • Ben-Haïm E, Lesne A, Victor JM (2001) Chromatin: a tunable spring at work inside chromosomes. Phys Rev E 64(051):921

    Google Scholar 

  • Byrd K, Corces VG (2003) Visualisation of chromatin domains created by the gypsy insulator of Drosophila. J Cell Biol 162:565–574

    Article  Google Scholar 

  • Cook PR (1999) The organization of replication and transcription. Science 284:1790–1795

    Article  Google Scholar 

  • Crick FHC (1976) Linking numbers and nucleosomes. Proc Natl Acad Sci USA 73:2639–2643

    Article  MathSciNet  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (2002) Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J Mol Biol 319:1097–1113

    Article  Google Scholar 

  • De Lucia F, Alilat M, Sivolob A, Prunell A (1999) Nucleosome dynamics. iii. histone tail-dependent fluctuation of nucleosomes between open and closed DNA conformations. implications for chromatin dynamics and the linking number paradox. J Mol Biol 285:1101–1119

    Article  Google Scholar 

  • Fuller FB (1971) The writhing number of a space curve. Proc Natl Acad Sci USA 68:815–819

    Article  MATH  MathSciNet  Google Scholar 

  • Fuller FB (1978) Decomposition of the linking number of a closed ribbon: a problem from molecular biology. Proc Natl Acad Sci USA 75:3557–3561

    Article  MATH  MathSciNet  Google Scholar 

  • Giaever G, Wang J (1988) Supercoiling of intracellular DNA can occur in eukaryotic cells. Cell 55:849–856

    Article  Google Scholar 

  • Labrador M, Corces VG (2002) Settong the boundaries of chromatin domains and nuclear organization. Cell 111:151–154

    Article  Google Scholar 

  • Lavelle C (2007) Transcription elongation through a chromatin template. Biochimie 89:516–527

    Article  Google Scholar 

  • Lavelle C, Bancaud A, Recouvreux P, Barbi M, Victor JM, Viovy JL (2011) Chromatin topological transitions. Prog Theor Phys 191:30–39

    Google Scholar 

  • Le Bret M (1988) Computation of the helical twist of nucleosomal DNA. J Mol Biol 200:285–290

    Article  Google Scholar 

  • Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci USA 84:7024–7027

    Article  Google Scholar 

  • Ljungman M, Hanawalt P (1992) Localized torsional tension in the DNA of human cells. Proc Natl Acad Sci USA 89:6055–6059

    Article  Google Scholar 

  • Luger K, Maeder AW, Richmond RK, Sargent DF, Richmond TJ (1997) X-ray structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–259

    Article  Google Scholar 

  • Maggs AC (2000) Twist and writhe dynamics of stiff polymers. Phys Rev Lett 85:5472–5475. doi:10.1103/PhysRevLett.85.5472

    Google Scholar 

  • Maggs AC (2001) Writhing geometry at finite temperature: Random walks and geometric phases for stiff polymers. J Chem Phys 114:5888–5896

    Article  Google Scholar 

  • Matsumoto K, Hirose S (2004) Visualization of unconstrained negative supercoils of DNA on polytene chromosomes of drosophila. J Cell Sci 117:3797–3805

    Article  Google Scholar 

  • Mozziconacci J, Lavelle C, Barbi M, Lesne A, Victor JM (2006) A physical model for the condensation and decondensation of eukaryotic chromosomes. FEBS Lett 580:368–372

    Article  Google Scholar 

  • Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at hsp70 loci. Cell 134:74–84

    Article  Google Scholar 

  • Prunell A (1998) A topological approach to nucleosome structure and dynamics: the linking number paradox and other issues. Biophys J 74(5):2531–2544

    Article  Google Scholar 

  • Recouvreux P, Lavelle C, Barbi M, Conde e Silva N, Le Cam E, Victor JM, Viovy JL (2011) Linkers histones incorporation mantains chromatin fiber plasticity. Biophysical J 100:2726–2735

    Article  Google Scholar 

  • Robinson PJ, Fairall L, Huynh VA, Rhodes D (2006) Em measurements define the dimensions of the 30-nm chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci USA 103: 6506–6511

    Google Scholar 

  • Rossetto V, Maggs AC (2003) Writhing geometry of open DNA. J Chem Phys 118:9864–9874

    Article  Google Scholar 

  • Routh A, Sandin DS, Rhodes, (2008) Nucleosome repeat length and linker histone stoichiometry determine chromatin. Proc Natl Acad Sci USA 105:8872–8877

  • Schalch T, Duda S, Sargent DF, Richmond T (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141

    Article  Google Scholar 

  • Sivolob A, Prunell A (2004) Nucleosome conformational flexibility and implications for chromatin dynamics. Phil Trans R Soc Lond A 362:1519–1547

    Article  MATH  MathSciNet  Google Scholar 

  • Sivolob A, Lavelle C, Prunell A (2003) Sequence-dependent nucleosome structural and dynamic polymorphism. potential involvement of histone H2B n-terminal tail proximal domain. J Mol Biol 326:49–63

    Article  Google Scholar 

  • Starostin EL (2002) On the writhe of non-closed curves, arXiv:physics/0212095v1

  • Starostin EL (2005) On the writhe of non-closed curves. ch. 26. In: Physical and numerical models in Knot Theory including applications to the life sciences, vol 36. World Scientific, Singapore, pp. 525–545

  • Strick TR, Allemand JF, Bensimon D, Croquette V (1998) The behavior of supercoiled DNA. Biophys J 74:2016–2028

    Article  Google Scholar 

  • Uptain S, Kane C, Chamberlin M (1997) Basic mechanisms of transcript elongation and its regulation. Annu Rev Biochem 66:117–1726

    Article  Google Scholar 

  • Vinograd J, Lebowitz J, Radloff R, Watson R, Laipis P (1965) The twisted circular form of polyoma viral DNA. Proc Natl Acad Sci USA 53:1104–1111

    Article  Google Scholar 

  • Weidemann T, Wachsmuth M, Knoch TA, Müller G, Waldeck W, Langowski J (2003) Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging. J Mol Biol (334)

  • White JH, Bauer WR (1988a) Applications of the twist difference to DNA structural analysis. Proc Natl Acad Sci USA 85:772–776

    Article  MathSciNet  Google Scholar 

  • White JH, Bauer WR (1988b) Dependence of the linking deficiency of supercoiled minichromosomes upon nucleosome distortion. Nucl Acids Res 17:8527–8535

    Google Scholar 

  • White JH, Gallo R, Bauer WR (1986) Calculation of the twist and writhe for representative models of DNA. J Mol Biol 189:329–341

    Article  Google Scholar 

  • Williams S, Athey B, Muglia L, Schappe R, Gough A, Langmore J (1986) Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length. Biophys J 49

  • Wolffe A (1998) Chromatin: structure and function. Academic Press, London

    Google Scholar 

  • Wong H, Victor JM, Mozziconacci J (2007) An all-atom model of the chromatin fiber containing linker histones reveals a versatile structure tuned by the nucleosomal repeat length. PLoS ONE 2:e877

    Article  Google Scholar 

  • Wong H, Winn PJ, Mozziconacci J (2009) A molecular model of chromatin organisation and transcription: how a multi-RNA polymerase II machine transcribes and remodels the beta-globin locus during development. BioEssays 31(12):1357–1366

    Article  Google Scholar 

  • Woodcock LC, Dimitrov S (2001) Higher-order structure of chromatin and chromosomes. Curr Opin Genet Dev 11(130–135)

    Google Scholar 

  • Zlatanova J, Victor JM (2009) How are nucleosomes disrupted during transcription elongation? HFSP 3:373–378

    Article  Google Scholar 

  • Zlatanova J, Bishop TC, Victor J, Jackson V, van Holde K (2009) The nucleosome family: dynamic and growing. Structure 17:160–171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Barbi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbi, M., Mozziconacci, J., Wong, H. et al. DNA topology in chromosomes: a quantitative survey and its physiological implications. J. Math. Biol. 68, 145–179 (2014). https://doi.org/10.1007/s00285-012-0621-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-012-0621-y

Keywords

Mathematics Subject Classification (2000)

Navigation