Skip to main content
Log in

How small are small mutation rates?

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We consider evolutionary game dynamics in a finite population of size N. When mutations are rare, the population is monomorphic most of the time. Occasionally a mutation arises. It can either reach fixation or go extinct. The evolutionary dynamics of the process under small mutation rates can be approximated by an embedded Markov chain on the pure states. Here we analyze how small the mutation rate should be to make the embedded Markov chain a good approximation by calculating the difference between the real stationary distribution and the approximated one. While for a coexistence game, where the best reply to any strategy is the opposite strategy, it is necessary that the mutation rate μ is less than N −1/2exp[−N] to ensure that the approximation is good, for all other games, it is sufficient if the mutation rate is smaller than (N ln N)−1. Our results also hold for a wide class of imitation processes under arbitrary selection intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antal T, Scheuring I (2006) Fixation of strategies for an evolutionary game in finite populations. Bull Math Biol 68: 1923–1944

    Article  MathSciNet  Google Scholar 

  • Antal T, Nowak MA, Traulsen A (2009) Strategy abundance in 2 × 2 games for arbitrary mutation rates. J Theor Biol 257: 340–344

    Article  Google Scholar 

  • Antal T, Ohtsuki H, Wakeley J, Taylor PD, Nowak MA (2009) Evolution of cooperation by phenotypic similarity. Proc Natl Acad Sci USA 106: 8597–8600

    Article  Google Scholar 

  • Antal T, Traulsen A, Ohtsuki H, Tarnita CE, Nowak MA (2009) Mutation-selection equilibrium in games with multiple strategies. J Theor Biol 258: 614–622

    Article  Google Scholar 

  • Blume LE (1993) The statistical mechanics of strategic interaction. Games Econ Behav 5: 387–424

    Article  MathSciNet  MATH  Google Scholar 

  • Brémaud P (1999) Markov chains: Gibbs fields, Monte Carlo simulation, and queues. Springer, Berlin

    MATH  Google Scholar 

  • Bürger R (2000) The mathematical theory of selection, recombination, and mutation. Wiley, New York

    MATH  Google Scholar 

  • Chalub FA, Souza MO (2009) From discrete to continuous evolution models: A unifying approach to drift-diffusion and replicator dynamics. Theor Popul Biol 76: 268–277

    Article  Google Scholar 

  • Claussen JC, Traulsen A (2005) Non-Gaussian fluctuations arising from finite populations: exact results for the evolutionary Moran process. Phys Rev E 71: 025101(R)

    Article  Google Scholar 

  • Cressman R (1992) The stability concept of evolutionary game theory. Lecture Notes in Biomathematics, vol 94. Springer, Berlin

  • Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New York

    MATH  Google Scholar 

  • Durrett R (1996) Probability: theory and examples. Citeseer

  • Ewens WJ (2004) Mathematical population genetics. Springer, New York

    MATH  Google Scholar 

  • Foster D, Young P (1990) Stochastic evolutionary game dynamics. Theor Popul Biol 38: 219–232

    Article  MathSciNet  MATH  Google Scholar 

  • Fudenberg D, Harris C (1992) Evolutionary dynamics with aggregate shocks. J Econ Theory 57: 420–441

    Article  MathSciNet  MATH  Google Scholar 

  • Fudenberg D, Imhof LA (2006) Imitation process with small mutations. J Econ Theory 131: 251–262

    Article  MathSciNet  MATH  Google Scholar 

  • Fudenberg D, Imhof LA (2008) Monotone imitation dynamics in large populations. J Econ Theory 140: 229–245

    Article  MATH  Google Scholar 

  • Gardiner CW (2004) Handbook of Stochastic Methods, 3rd edn. Springer, New York

    Google Scholar 

  • Goel N, Richter-Dyn N (1974) Stochastic models in biology. Academic Press, New York

    Google Scholar 

  • Hauert C, Traulsen A, Brandt H, Nowak MA, Sigmund K (2007) Via freedom to coercion: the emergence of costly punishment. Science 316: 1905–1907

    Article  MathSciNet  MATH  Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Imhof LA, Nowak MA (2006) Evolutionary game dynamics in a Wright Fisher process. J Math Biol 52: 667–681

    Article  MathSciNet  MATH  Google Scholar 

  • Imhof LA, Fudenberg D, Nowak MA (2005) Evolutionary cycles of cooperation and defection. Proc Natl Acad Sci USA 102: 10797–10800

    Article  Google Scholar 

  • Kallenberg O (2002) Foundations of modern probability. Springer, Berlin

    MATH  Google Scholar 

  • Kampen NGv (1997) Stochastic processes in physics and chemistry, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Kandori M, Mailath GJ, Rob R (1993) Learning, mutation, and long run equilibria in games. Econometrica 61: 29–56

    Article  MathSciNet  MATH  Google Scholar 

  • Karlin S, Taylor HMA (1975) A first course in stochastic processes, 2nd edn. Academic, London

    MATH  Google Scholar 

  • Levin DA, Peres Y, Wilmer EL (2009) Markov chains and mixing times. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Nowak MA (2006) Evolutionary dynamics. Harvard University Press, Cambridge

    MATH  Google Scholar 

  • Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428: 646–650

    Article  Google Scholar 

  • Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs. Nature 441: 502–505

    Article  Google Scholar 

  • Roca CP, Cuesta JA, Sanchez A (2009) Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys Life Rev 6: 208–249

    Article  Google Scholar 

  • Santos FC, Pacheco JM (2005) Scale-free networks provide a unifying framework for the emergence of cooperation. Phys Rev Lett 95: 098104

    Article  Google Scholar 

  • Sella G, Hirsh AE (2005) The application of statistical physics to evolutionary biology. Proc Natl Acad Sci USA 102(27): 9541–9546

    Article  Google Scholar 

  • Sigmund K, DeSilva H, Traulsen A, Hauert C (2010) Social learning promotes institutions for governing the commons. Nature 466: 861–863

    Article  Google Scholar 

  • Szabó G, Fáth G (2007) Evolutionary games on graphs. Phys Rep 446: 97–216

    Article  MathSciNet  Google Scholar 

  • Szabó G, Tőke C (1998) Evolutionary Prisoner’s Dilemma game on a square lattice. Phys Rev E 58: 69

    Article  Google Scholar 

  • Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA (2009) Strategy selection in structured populations. J Theor Biol 259: 570–581

    Article  Google Scholar 

  • Taylor C, Fudenberg D, Sasaki A, Nowak MA (2004) Evolutionary game dynamics in finite populations. Bull Math Biol 66: 1621–1644

    Article  MathSciNet  Google Scholar 

  • Traulsen A, Nowak MA (2007) Chromodynamics of cooperation in finite populations. PLoS One 2: e270

    Article  Google Scholar 

  • Traulsen A, Nowak MA, Pacheco JM (2006) Stochastic dynamics of invasion and fixation. Phys Rev E 74: 011909

    Article  Google Scholar 

  • Traulsen A, Shoresh N, Nowak MA (2008) Analytical results for individual and group selection of any intensity. Bull Math Biol 70: 1410–1424

    Article  MathSciNet  MATH  Google Scholar 

  • Traulsen A, Hauert C, De Silva H, Nowak MA, Sigmund K (2009) Exploration dynamics in evolutionary games. Proc Natl Acad Sci USA 106: 709–712

    Article  MATH  Google Scholar 

  • Van Segbroeck S, Santos FC, Lenaerts T, Pacheco JM (2009) Reacting differently to adverse ties promotes cooperation in social networks. Phys Rev Lett 102: 058105

    Article  Google Scholar 

  • van Veelen M (2007) Hamilton’s missing link. J Theor Biol 246: 551–554

    Article  Google Scholar 

  • Wang J, Wu B, Chen X, Wang L (2010) Evolutionary dynamics of public goods games with diverse contributions in finite populations. Phys Rev E 81: 056103

    Article  Google Scholar 

  • Wu B, Altrock PM, Wang L, Traulsen A (2010) Universality of weak selection. Phys Rev E 82: 046106

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Traulsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B., Gokhale, C.S., Wang, L. et al. How small are small mutation rates?. J. Math. Biol. 64, 803–827 (2012). https://doi.org/10.1007/s00285-011-0430-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0430-8

Keywords

Mathematics Subject Classification (2000)

Navigation