Skip to main content

Advertisement

Log in

Extinction times and size of the surviving species in a two-species competition process

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We investigate a stochastic model for the competition between two species. Based on percentiles of the maximum number of individuals in the ecosystem, we present an approximating model for which the extinction time can be thought of as a phase-type random variable. We determine formulae for the probabilities of extinction and the moments of the extinction time. We discuss the use of several quasi-stationary assumptions. We include a comparative study between existing asymptotic results, results obtained from a simulation of the process, and our solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen EJ (1999) Stochastic differential equations and persistence time for two interacting populations. Dyn Contin Discret Impuls Syst 5: 271–281

    MATH  Google Scholar 

  • Allen LJS (2003) An introduction to stochastic processes with applications to biology. Pearson Education, New Jersey

    MATH  Google Scholar 

  • Bailey NTJ (1964) The elements of stochastic processes. Wiley, New York

    MATH  Google Scholar 

  • Ballyk MM, Wolkowicz GSK (2010) Classical and resource-based competition: a unifying graphical approach. J Math Biol. doi:10.1007/s00285-010-0328-x

  • Barbour AD (1976) Quasi-stationary distributions in Markov population processes. Adv Appl Probab 8: 296–314

    Article  MATH  MathSciNet  Google Scholar 

  • Bartlett MS (1956) Deterministic and stochastic models for recurrent epidemics. In: Neyman J (ed) Proceedings of the 3rd Berkeley symposium on mathematical statistics and probability, vol IV: Contributions to biology and problems of health. University of California Press, Berkeley, pp 81–109

    Google Scholar 

  • Bartlett MS (1960) Stochastic population models in ecology and epidemiology. Wiley, New York

    MATH  Google Scholar 

  • Bean NG, Bright L, Latouche G, Pearce CEM, Pollett PK, Taylor PG (1997) The quasi-stationary behavior of quasi-birth-and-death processes. Ann Appl Probab 7: 134–155

    Article  MATH  MathSciNet  Google Scholar 

  • Bean NG, Pollett PK, Taylor PG (2000) Quasistationary distributions for level-dependent quasi-birth-and-death processes. Stoch Model 16: 511–541

    Article  MATH  MathSciNet  Google Scholar 

  • Billard L (1974) Competition between two species. Stoch Process Their Appl 2: 391–398

    Article  MATH  MathSciNet  Google Scholar 

  • Brockwell PJ (1985) The extinction time of a birth, death and catastrophe process and of a related diffusion model. Adv Appl Probab 17: 42–52

    Article  MATH  MathSciNet  Google Scholar 

  • Chung KL (1960) Markov chains with stationary transition probabilities. Springer, Berlin

    MATH  Google Scholar 

  • Cushing JM (1980) Two species competition in a periodic environment. J Math Biol 10: 385–400

    Article  MATH  MathSciNet  Google Scholar 

  • Darroch JN, Seneta E (1965) On quasi-stationary distributions in absorbing discrete-time finite Markov chains. J Appl Probab 2: 88–100

    Article  MATH  MathSciNet  Google Scholar 

  • Darroch JN, Seneta E (1967) On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J Appl Probab 4: 192–196

    Article  MATH  MathSciNet  Google Scholar 

  • Ellner S (1989) Convergence to stationary distributions in two-species stochastic competition models. J Math Biol 27: 451–462

    Article  MATH  MathSciNet  Google Scholar 

  • Gyllenberg M, Silvestrov DS (1994) Quasi-stationary distributions of a stochastic metapopulation model. J Math Biol 33: 35–70

    Article  MATH  MathSciNet  Google Scholar 

  • Gyllenberg M, Silvestrov DS (2008) Quasi-stationary phenomena in nonlinearly perturbed stochastic systems. Walter de Gruyter GmbH & Co. KG, Berlin

    Book  Google Scholar 

  • Hsu SB (1981) On a resource based ecological competition model with interference. J Math Biol 12: 45–52

    Article  MATH  MathSciNet  Google Scholar 

  • Iglehart DL (1964) Multivariate competition processes. Ann Math Stat 35: 350–361

    Article  MATH  MathSciNet  Google Scholar 

  • Kemeny JG, Snell JL (1961) Potentials for denumerable Markov chains. J Math Anal Appl 6: 196–260

    Article  MathSciNet  Google Scholar 

  • Kijima M (1997) Markov processes for stochastic modelling. Chapman & Hall, London

    Google Scholar 

  • Lamperti J (1963) Criteria for stochastic processes. II. Passage-time moments. J Math Anal Appl 7: 127–145

    Article  MATH  MathSciNet  Google Scholar 

  • Li B, Smith HL (2007) Global dynamics of microbial competition for two resources with internal storage. J Math Biol 55: 481–515

    Article  MATH  MathSciNet  Google Scholar 

  • Lotka AJ (1925) Elements of physical biology. Williams & Wilkins, Baltimore

    MATH  Google Scholar 

  • Neuts MF (1994) Matrix-geometric solutions in stochastic models: an algorithmic approach, 2nd edn. Dover Publications, New York

    Google Scholar 

  • Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, New York

    MATH  Google Scholar 

  • Norris JR (2004) Markov chains. Cambridge University Press, Cambridge

    Google Scholar 

  • Pakes AG (1987) Limit theorems for the population size of a birth and death process allowing catastrophes. J Math Biol 25: 307–325

    Article  MATH  MathSciNet  Google Scholar 

  • Pakes AG (1988) The supercritical birth, death and catastrophe process: limit theorems on the set of non-extinction. J Math Biol 26: 405–420

    Article  MATH  MathSciNet  Google Scholar 

  • Pakes AG (1989) A complementary note on the supercritical birth, death and catastrophe process. J Math Biol 27: 321–325

    Article  MATH  MathSciNet  Google Scholar 

  • Pakes AG, Pollett PK (1989) The supercritical birth, death and catastrophe process: limit theorems on the set of extinction. Stoch Process Their Appl 32: 161–170

    Article  MATH  MathSciNet  Google Scholar 

  • Pielou EC (1969) An introduction to mathematical ecology. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Pitman JW (1977) Occupation measures for Markov chains. Adv Appl Probab 9: 69–86

    Article  MATH  MathSciNet  Google Scholar 

  • Renshaw E (1991) Modelling biological populations in space and time. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Reuter GEH (1961) Competition processes. In: Neyman J (ed) Proceedings of the 4th Berkeley symposium on mathematical statistics and probability, vol II: Contributions to probability theory. University of California Press, Berkeley, pp 421–430

    Google Scholar 

  • Ridler-Rowe CJ (1978) On competition between two species. J Appl Probab 15: 457–465

    Article  MATH  MathSciNet  Google Scholar 

  • Roozen H (1987) Equilibrium and extinction in stochastic population dynamics. Bull Math Biol 49: 671–696

    MATH  MathSciNet  Google Scholar 

  • Shi DH, Guo J, Liu L (1996) SPH-Distributions and the rectangle-iterative algorithm. In: Chakravarthy SR, Alfa AS (eds) Matrix-analytic methods in stochastic models. Lecture notes in pure and applied mathematics, vol 183. Marcel Dekker, Inc., New York, pp 207–224

  • Silvestrov DS (1996) Recurrence relations for generalized hitting times for semi-Markov processes. Ann Appl Probab 6: 617–649

    Article  MATH  MathSciNet  Google Scholar 

  • Tilman D (1982) Resource competition and community structure. Princeton University Press, New Jersey

    Google Scholar 

  • Volterra V (1931) Leçons sur la théorie mathématique de la lutte pour la vie. Gauthier-Villars, Paris

    Google Scholar 

  • Walker DM (1998) The expected time until absorption when absorption is not certain. J Appl Probab 35: 812–823

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gómez-Corral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Corral, A., López García, M. Extinction times and size of the surviving species in a two-species competition process. J. Math. Biol. 64, 255–289 (2012). https://doi.org/10.1007/s00285-011-0414-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0414-8

Keywords

Mathematics Subject Classification (2000)

Navigation