Skip to main content

Advertisement

Log in

A graph-theoretic method for the basic reproduction number in continuous time epidemiological models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In epidemiological models of infectious diseases the basic reproduction number \({\mathcal{R}_0}\) is used as a threshold parameter to determine the threshold between disease extinction and outbreak. A graph-theoretic form of Gaussian elimination using digraph reduction is derived and an algorithm given for calculating the basic reproduction number in continuous time epidemiological models. Examples illustrate how this method can be applied to compartmental models of infectious diseases modelled by a system of ordinary differential equations. We also show with these examples how lower bounds for \({\mathcal{R}_0}\) can be obtained from the digraphs in the reduction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson R, May R (1991) Infectious diseases of humans: dynamics and control. Oxford University Press, New York

    Google Scholar 

  2. Berman A, Plemmons R (1979) Nonnegative matrices in the mathematical sciences. Academic Press, Dublin

    MATH  Google Scholar 

  3. de-Camino-Beck T, Lewis MA (2007) A new method for calculating net reproductive rate from graph reduction with application to the control of invasive species. Bull Math Biol 69(4): 1341–1354

    Article  MATH  MathSciNet  Google Scholar 

  4. de-Camino-Beck T, Lewis MA (2008) On net reproductive rate and the timing of reproductive output. Am Nat 172(1): 128–139

    Article  Google Scholar 

  5. Caswell H (2001) Matrix population models: construction, analysis, and interpretation, 2nd edn. Sinauer Associates, USA

    Google Scholar 

  6. Chen W (1976) Applied graph theory: graphs and electrical networks, 2nd revised edn. North-Holland, Amsterdam

    MATH  Google Scholar 

  7. Choi B, Pak A (2003) A simple approximate mathematical model to predict the number of severe acute respiratory syndrome cases and deaths. J Epidemiol Community Health 57: 831–835

    Article  Google Scholar 

  8. Coates C (1959) Flow-graph solutions of linear equations. IRE trans. Circuit Theory CT-6, pp 170–187

  9. Davis T (2006) Direct methods for sparse linear systems. SIAM, Philadelphia

    MATH  Google Scholar 

  10. Diekmann O, Heesterbeek J (2000) Mathematical epidemiology of infectious diseases: model building, analysis, and interpretation. Wiley, New York

    Google Scholar 

  11. van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180: 29–48

    Article  MATH  MathSciNet  Google Scholar 

  12. Fulford G, Roberts M, Heesterbeek J (2002) The metapopulation dynamics of an infectious disease: tuberculosis in possums. Theor Popul Biol 61: 15–29

    Article  MATH  Google Scholar 

  13. Harary F (1962) Determinant of adjacency matrix of a graph. SIAM Rev 4: 202–210

    Article  MATH  MathSciNet  Google Scholar 

  14. Heesterbeek J (2002) A brief history of R 0 and a recipe for its calculation. Acta Biotheoretica 50: 189–204

    Article  Google Scholar 

  15. Heffernan J, Smith R, Wahl L (2005) Perspectives on the basic reproductive ratio. J R Soc Interface 2: 281–293

    Article  Google Scholar 

  16. Hethcote H (2000) The mathematics of infectious diseases. SIAM Rev 42: 599–653

    Article  MATH  MathSciNet  Google Scholar 

  17. Lewis M, Renclawowicz J, van den Driessche P (2006a) Traveling waves and spread rates for a West Nile virus model. Bull Math Biol 68: 3–23

    Article  MathSciNet  Google Scholar 

  18. Lewis M, Renclawowicz J, van den Driessche P, Wonham M (2006b) A comparison of continuous and discrete-time West Nile virus models. Bull Math Biol 68: 491–509

    Article  MathSciNet  Google Scholar 

  19. Li C, Schneider H (2002) Applications of Perron–Frobenius theory to population dynamics. J Math Biol 44(5): 450–462

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu R, Shuai J, Wu J, Zhu H (2006) Modeling spatial spread of West Nile virus and impact of directional dispersal of birds. Math Biosci Eng 3: 145–160

    MATH  MathSciNet  Google Scholar 

  21. Mason S, Zimmermann H (1960) Electronic circuits, signals, and systems. Wiley, New York

    Google Scholar 

  22. Mills C, Robins J, Lipsitch M (2004) Transmissibility of 1918 pandemic influenza. Nature 432: 904–906

    Article  Google Scholar 

  23. Roberts M (2007) The pluses and minuses of R 0. J R Soc Interface 4: 949–961

    Article  Google Scholar 

  24. Varga R, Cai DY (1981) On the LU factorization of M-matrices. Numerische Mathematik 38: 179–192

    Article  MATH  MathSciNet  Google Scholar 

  25. Wonham M, de-Camino-Beck T, Lewis M (2004) An epidemiological model for West Nile virus: invasion analysis and control applications. Proc R Soc London Ser B-Biol Sci 271: 501–507

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomás de-Camino-Beck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de-Camino-Beck, T., Lewis, M.A. & van den Driessche, P. A graph-theoretic method for the basic reproduction number in continuous time epidemiological models. J. Math. Biol. 59, 503–516 (2009). https://doi.org/10.1007/s00285-008-0240-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0240-9

Mathematics Subject Classification (2000)

Navigation