Skip to main content
Log in

A bidomain threshold model of propagating calcium waves

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We present a bidomain fire-diffuse-fire model that facilitates mathematical analysis of propagating waves of elevated intracellular calcium (Ca2+) in living cells. Modeling Ca2+ release as a threshold process allows the explicit construction of traveling wave solutions to probe the dependence of Ca2+ wave speed on physiologically important parameters such as the threshold for Ca2+ release from the endoplasmic reticulum (ER) to the cytosol, the rate of Ca2+ resequestration from the cytosol to the ER, and the total [Ca2+] (cytosolic plus ER). Interestingly, linear stability analysis of the bidomain fire-diffuse-fire model predicts the onset of dynamic wave instabilities leading to the emergence of Ca2+ waves that propagate in a back-and-forth manner. Numerical simulations are used to confirm the presence of these so-called ‘tango waves’ and the dependence of Ca2+ wave speed on the total [Ca2+].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berridge M.J. (1993). Inositol trisphosphate and calcium signalling. Nature 361(6410): 315–325

    Article  Google Scholar 

  2. Whitaker M. (2006). Calcium at fertilization and in early development. Physiol. Rev. 86(1): 25–88

    Article  Google Scholar 

  3. Miyazaki S., Ito M. (2006). Calcium signals for egg activation in mammals. J. Pharmacol. Sci. 100(5): 545–552

    Article  Google Scholar 

  4. Bers D.M. (2002). Cardiac excitation–contraction coupling. Nature 415(6868): 198–205

    Article  Google Scholar 

  5. Clapham D.E. (1995). Calcium signaling. Cell 80(2): 259–268

    Article  Google Scholar 

  6. Keizer J., Li Y.X., Stojilkovic S., Rinzel J. (1995). InsP3-induced Ca2+ excitability of the endoplasmic reticulum. Mol. Biol. Cell 6(8): 945–951

    Google Scholar 

  7. Ghosh A., Greenberg M.E. (1995). Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268(5208): 239–247

    Article  Google Scholar 

  8. Berridge M.J. (1997). Elementary and global aspects of calcium signalling. J. Physiol. 499(Pt 2): 291–306

    Google Scholar 

  9. Berridge M.J. (1998). Neuronal calcium signaling. Neuron 21(1): 13–26

    Article  Google Scholar 

  10. Bezprozvanny I., Ehrlich B.E. (1995). The inositol 1,4,5-trisphosphate (InsP3) receptor. J. Membr. Biol. 145(3): 205–216

    Google Scholar 

  11. Ehrlich B.E. (1995). Functional properties of intracellular calcium-release channels. Curr. Opin. Neurobiol. 5(3): 304–209

    Article  MathSciNet  Google Scholar 

  12. Li Y.X., Keizer J., Stojilkovic S.S., Rinzel J. (1995). Ca2+ excitability of the ER membrane: an explanation for IP3-induced Ca2+ oscillations. Am. J. Physiol. 269(5 Pt 1): C1079–C1092

    Google Scholar 

  13. Lechleiter J.D., Clapham D.E. (1992). Molecular mechanisms of intracellular calcium excitability in X. laevis oocytes. Cell 69(2): 283–294

    Article  Google Scholar 

  14. Ridgway E.B., Gilkey J.C., Jaffe L.F. (1977). Free calcium increases explosively in activating medaka eggs. Proc. Natl. Acad. Sci. USA 74(2): 623–627

    Article  Google Scholar 

  15. Nuccitelli R., Yim D.L., Smart T. (1993). The sperm-induced Ca2+ wave following fertilization of the Xenopus eggs requires the production of Ins(1,4,5)P3. Dev. Biol. 158: 200–212

    Article  Google Scholar 

  16. Stricker S.A., Centonze V.E., Melendez R.F. (1994). Calcium dynamics during starfish oocyte maturation and fertilization. Dev. Biol. 166(1): 34–58

    Article  Google Scholar 

  17. Dumollard R., McDougall A., Rouvire C., Sardet C. (2004). Fertilisation calcium signals in the ascidian egg. Biol. Cell 96(1): 29–36

    Article  Google Scholar 

  18. Cheng H., Lederer M.R., Lederer W.J., Cannell M.B. (1996). Calcium sparks and \([\mathrm{Ca}^{2+}]_i\) waves in cardiac myocytes. Am. J. Physiol. 270(1): C148–C159

    Google Scholar 

  19. Lee C.H., Poburko D., Kuo K.H., Seow C.Y., van Breemen C. (2002). Ca2+ oscillations, gradients, and homeostasis in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 282(5): H1571–H1583

    Google Scholar 

  20. Ying X., Minamiya Y., Fu C., Bhattacharya J. (1996). Ca2+ waves in lung capillary endothelium. Circ. Res. 79(4): 898–908

    Google Scholar 

  21. Fink C.C., Slepchenko B., Moraru I.I., Watras J., Schaff J.C., Loew L.M. (2000). An image-based model of calcium waves in differentiated neuroblastoma cells. Biophys. J. 79(1): 163–83

    Google Scholar 

  22. Fiacco T.A., McCarthy K.D. (2006). Astrocyte calcium elevations: properties, propagation and effects on brain signaling. Glia 54(7): 676–690

    Article  Google Scholar 

  23. Kiselyov K., Wang X., Shin D.M., Zang W., Muallem S. (2006). Calcium signaling complexes in microdomains of polarized secretory cells. Cell Calcium 40(5–6): 451–459

    Article  Google Scholar 

  24. Dupont G., Goldbeter A. (1992). Oscillations and waves of cytosolic calcium: insights from theoretical models. Bioessays 14(7): 485–493

    Article  Google Scholar 

  25. Atri A., Amundson J., Clapham D., Sneyd J. (1993). A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65(4): 1727–1739

    Google Scholar 

  26. Sneyd J., Girard S., Clapham D. (1993). Calcium wave propagation by calcium-induced calcium release: an unusual excitable system. Bull. Math. Biol. 55(2): 315–344

    MATH  Google Scholar 

  27. Dupont G., Goldbeter A. (1994). Properties of intracellular Ca2+ waves generated by a model based on Ca2+-induced Ca2+ release. Biophys. J. 67(6): 2191–2204

    Google Scholar 

  28. Jafri M.S., Keizer J. (1994). Diffusion of inositol 1,4,5-trisphosphate but not Ca2+ is necessary for a class of inositol 1,4,5-trisphosphate-induced Ca2+ waves. Proc. Natl. Acad. Sci. USA 91(20): 9485–9489

    Article  Google Scholar 

  29. Jafri M.S., Keizer J. (1995). On the roles of Ca2+ diffusion, Ca2+ buffers and the endoplasmic reticulum in IP3-induced Ca2+ waves. Biophys. J. 69(5): 2139–2153

    Google Scholar 

  30. Jafri S.M., Keizer J. (1997). Agonist-induced calcium waves in oscillatory cells: a biological example of burgers’ equation. Bull. Math. Biol. 59(6): 1125–1144

    Article  MATH  Google Scholar 

  31. Wagner J., Li Y.X., Pearson J., Keizer J. (1998). Simulation of the fertilization Ca2+ wave in Xenopus laevis eggs. Biophys. J. 75(4): 2088–2097

    Google Scholar 

  32. Sneyd, J.: An introduction to Mathematical Modeling in Physiology, Cell Biology, and Immunology chapter Calcium excitability. American Mathematical Society, pp 83–118 (2002)

  33. Fall C.P., Wagner J.M., Loew L.M., Nuccitelli R. (2004). Cortically restricted production of IP3 leads to propagation of the fertilization Ca2+ wave along the cell surface in a model of the Xenopus egg. J. Theor. Biol. 231(4): 487–496

    Article  Google Scholar 

  34. Falcke M., Li Y., Lechleiter D.J., Camacho P. (2003). Modeling the dependence of the period of intracellular Ca2+ waves on SERCA expression. Biophys. J. 85: 1474–1481

    Google Scholar 

  35. De Young G.W., Keizer J. (1992). A single pool IP3-receptor based model for agonist stimulated Ca2+ oscillations. Proc. Natl. Acad. Sci. USA 89: 9895–9899

    Article  Google Scholar 

  36. Li Y.X., Rinzel J. (1994). Equations for InsP3 receptor-mediated \([\mathrm{Ca}^{2+}]_i\) oscillations derived from a detailed kinetic model: a Hodgkin–Huxley like formalism. J. Theor. Biol. 166(4): 461–473

    Article  Google Scholar 

  37. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, Heidelberg (1998)

  38. Smith, G.D., Pearson, J.E., Keizer, J.E.: Modeling intracellular Ca2+ waves and sparks. In: Fall C.P., Marland E.S., Wagner J.M., Tyson J.J. (eds.) Computational Cell Biology, pp 198–229. Springer, Heidelberg (2002)

  39. Sneyd J., Keizer J., Sanderson M.J. (1995). Mechanisms of calcium oscillations and waves: a quantitative analysis. FASEB J. 9(14): 1463–1472

    Google Scholar 

  40. Li Y.-X. (2003). Tango waves in a bidomain model of fertilization calcium waves. Physica D 186: 27–49

    Article  MATH  MathSciNet  Google Scholar 

  41. Stricker S.A. (1996). Repetitive calcium waves induced by fertilization in the nemertean worm Cerebratulus lacteus. Dev. Biol. 176: 243–263

    Article  Google Scholar 

  42. Yoshida M., Sensui N., Inoue T., Morisawa M., Mikoshiba K. (1998). Role of two series of Ca2+ oscillations in activation of ascidian eggs. Dev. Biol. 203: 122–133

    Article  Google Scholar 

  43. Prat A., Li Y.-X. (2003). Stability of front solutions in inhomogeneous media. Physica D 186: 50–68

    Article  MATH  MathSciNet  Google Scholar 

  44. Yao Y., Choi J., Parker I. (1995). Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J. Physiol. 482: 533–553

    Google Scholar 

  45. Parker I., Choi J., Yao Y. (1996). Elementary events of InsP3-induced Ca2+ liberation in Xenopus oocytes: hot spots, puffs and blips. Cell Calcium 20(2): 105–21

    Article  Google Scholar 

  46. Bugrim A.E., Zhabotinsky A.M., Epstein I.R. (1997). Calcium waves in a model with a random spatially discrete distribution of Ca2+ release sites. Biophys. J. 73(6): 2897–906

    Article  Google Scholar 

  47. Cheng H., Lederer J.W., Cannell M.B. (1993). Calcium sparks: elementary events underlying excitation–contraction coupling in heart muscle. Science 262(5134): 740–4

    Article  Google Scholar 

  48. Keizer J.E., Smith G.D. (1998). Spark-to-wave transition: saltatory transmission of calcium waves in cardiac myocytes. Biophys. Chem. 72: 87–100

    Article  Google Scholar 

  49. Keizer J., Smith G.D., Ponce-Dawson S., Pearson J.E. (1998). Saltatory propagation of Ca2+ waves by Ca2+ sparks. Biophys. J. 75(2): 595–600

    Google Scholar 

  50. Pearson J.E., Ponce Dawson S. (1998). Crisis on skid row. Physica A 257: 141–148

    Article  Google Scholar 

  51. Dawson S.P., Keizer J., Pearson J.E. (1999). Fire-diffuse-fire model of dynamics of intracellular calcium waves. Proc. Natl. Acad. Sci. USA 96: 6060–6063

    Article  Google Scholar 

  52. Coombes S. (2001). The effect of ion pumps on the speed of travelling waves in the fire-diffuse-fire model of Ca2+ release. Bull. Math. Biol. 63: 1–20

    Article  MathSciNet  Google Scholar 

  53. Coombes S., Timofeeva Y. (2003). Sparks and waves in a stochastic fire-diffuse-fire model of Ca2+ release. Phys. Rev. E 68: 021915

    Article  MathSciNet  Google Scholar 

  54. Coombes S., Hinch R., Timofeeva Y. (2004). Receptors, sparks and waves in a fire-diffuse-fire framework for calcium release. Progress Biophys. Mol. Biol. 85: 197–216

    Article  Google Scholar 

  55. Timofeeva Y., Coombes S. (2004). Directed percolation in a two-dimensional stochastic fire-diffuse-fire model. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(6 Pt 1): 062901

    MathSciNet  Google Scholar 

  56. Timofeeva Y., Coombes S. (2003). Wave bifurcation and propagation failure in a model of calcium release. J. Math. Biol. 47: 249–269

    Article  MATH  MathSciNet  Google Scholar 

  57. Shannon T.R., Wang F., Puglisi J., Weber C., Bers D.M. (2004). A mathematical treatment of integrated Ca dynamics within the ventricular myocyte. Biophys. J. 87: 3351–3371

    Article  Google Scholar 

  58. Bressloff P.C., Folias S.E., Prat A., Li X.Y. (2003). Oscillatory waves in inhomogeneous neural media. Phys. Rev. Lett. 91(17): 178101

    Article  Google Scholar 

  59. Prat A., Li X.Y., Bressloff P. (2005). Inhomogeneity-induced bifurcation of stationary and oscillatory pulses. Physica D 202: 177–99

    Article  MATH  MathSciNet  Google Scholar 

  60. Terentyev D., Viatchenko-Karpinski S., Valdivia H.H., Escobar A.L., Gyorke S. (2002). Luminal Ca controls termination and refractory behaviour of Ca induced Ca release in cardiac myocytes. Circ. Res. 91: 414–420

    Article  Google Scholar 

  61. Keller M., Kao J.P., Egger M., Niggli E. (2007). Calcium waves driven by “sensitization” wave-fronts. Cardiovascular Res. 74(1): 39–45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thul, R., Smith, G.D. & Coombes, S. A bidomain threshold model of propagating calcium waves. J. Math. Biol. 56, 435–463 (2008). https://doi.org/10.1007/s00285-007-0123-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0123-5

Keywords

Mathematics Subject Classification (2000)

Navigation