1.

Benton T.G., Grant A. (1996) How to keep fit in the real world: elasticity analyses and selection pressures on life histories in a variable environment. Am. Nat. 147, 115–139

CrossRef2.

Birkhoff G. (1957) Extensions of Jentzch’s Theorem. Trans. Am. Math. Soc. 85, 219–227

CrossRefMathSciNet3.

Caswell H. (2001) Matrix Population Models. Sinauer, Sunderland

4.

Childs D.Z., Rees M., Rose K.E., Grubb P.J., Ellner S.P. (2003) Evolution of complex flowering strategies: an age and size-structured integral projection model. Proc. R. Soc. B 270, 1829–1839

CrossRef5.

Childs D.Z., Rees M., Rose K.E., Grubb P.J., Ellner S.P. (2004) Evolution of size dependent flowering in a variable environment: construction and analysis of a stochastic integral projection model. Proc. R. Soc. B 271, 425–434

CrossRef6.

Cohen J.E. (1976) Ergodicity of age structure in populations with Markovian vital rates. I. Countable states. J. Am. Stat. Assoc. 71, 335–339

CrossRef7.

Cohen J.E. (1977) Ergodicity of age structure in populations with Markovian vital rates. 2. General states. Adv. Appl. Prob. 9, 18–37

CrossRef8.

Crowder L.B., Crouse D.T., Heppell S.S., Martin T.H. (1994) Predicting the impact of turtle excluder devices on loggerhead sea-turtle populations. Ecol. Appl. 4, 437–445

9.

Diekmann O., Gyllenberg M, Metz J.A.J., Thieme H.R. (1998) On the formulation and analysis of general deterministic structured population models I. Linear Theory. J. Math. Biol. 36, 349–388

CrossRefMathSciNet10.

Diekmann O., Gyllenberg M., Huang H., Kirkilionis M., Metz J.A.J., Thieme H.R. (2001) On the formulation and analysis of general deterministic structured population models II. Nonlinear Theory. J. Math. Biol. 43, 157–189

CrossRefMathSciNet11.

Easterling, M.R.: The integral projection model: theory, analysis and application. Doctoral thesis, North Carolina State University, Raleigh (1998)

12.

Easterling M.R., Ellner S.P., Dixon P.M. (2000) Size-specific sensitivity: applying a new structured population model. Ecology 81, 694–708

CrossRef13.

Ellner S. (1984) Asymptotic behavior of some stochastic difference equation population models. J. Math. Biol. 19, 169–200

CrossRefMathSciNet14.

Ellner S.P., Guckenheimer J. (2006) Dynamics Models in Biology. Princeton University Press, Princeton

15.

Ellner S.P., Rees M. (2006) Integral projection models for species with complex demography. Am. Nat. 167, 410–428

CrossRef16.

Eveson, S.P.: Theory and application of Hilbert’s projective metric to linear and nonlinear problems in positive operator theory. D. Phil. Thesis, University of Sussex (1991)

17.

Eveson S.P. (1993) Hilberts’ projective metric and the spectral properties of positive linear operators. Proc. Lond. Math. Soc. 70, 411–440

MathSciNet18.

Fieberg J., Ellner S.P. (2001) Stochastic matrix models for conservation and management: a comparative review of methods. Ecol. Lett. 4, 244–266

CrossRef19.

Furstenburg H., Kesten H. (1960) Products of random matrices. Ann. Math. Stat. 31, 457–469

20.

Grafen A. (2006) A theory of Fisher’s reproductive value. J. Math. Biol. 53, 15–60

CrossRefMathSciNet21.

Hall P., Heyde C.C. (1980) Martingale limit theory and its applications. Academic, New York

22.

Halley J.M. (1996) Ecology,evolution, and 1/f-noise. Trends Ecol. Evol. 11, 33–37

CrossRef23.

Halley J.M., Inchausti P. (2004) The increasing importance of 1/f-noises as models of ecological variability. Fluct. Noise. Lett. 4, R1–R26

CrossRef24.

Hardin D.P., Takáč P., Webb G.F. (1988) Asymptotic properties of a continuous-space discrete time population model in a random environment. J. Math. Biol. 26, 361–374

MathSciNet25.

Hardin D.P., Takáč P., Webb G.F. (1988) A comparison of dispersal strategies for survival of spatially heterogeneous populations. SIAM J. Appl. Math. 48, 1396–1423

CrossRefMathSciNet26.

Hardin D.P., Takáč P., Webb G.F. (1990) Dispersion population models discrete in time and continuous in space. J. Math. Biol. 28, 406–409

CrossRef27.

Heppell S.S., Crowder L.B., Crouse D.T. (1996) Models to evaluate headstarting as a management tool for long-lived turtles Ecol. Appl. 6, 556–565

28.

Heppell S.S., Crouse D.R, Crowder L.B. (1998) Using matrix models to focus research and management efforts in conservation. In: Ferson S., Burgman M. (eds) Quantitative Methods for Conservation Biology. Springer, Berlin Heidelberg New York, pp. 148-168

29.

Ishitani H. (1977) A Central Limit Theorem for the subadditive process and its application to products of random matrices. Publ Res Inst Math Sci Kyoto University 12, 565–575

MathSciNet30.

Kareiva P., Marvier M., McClure M. (2000) Recovery and management options for spring/summer Chinook salmon in the Columbia River basin. Science 290, 977–979

CrossRef31.

Karlin S., Taylor H.M. (1975) A First Course in Stochastic Processes, 2nd ed. Academic, New York

MATH32.

Kaye T.N., Pyke D.A. (1975) The effect of stochastic technique on estimates of population viability from transition matrix models. Ecology 84, 1464–1476

33.

Kifer Y. (1986) Ergodic Theory of Random Transformations. Birkhäuser, Boston

MATH34.

Lange K, Holmes W. (1981) Stochastic stable population growth. J. Appl. Prob. 18, 325–344

CrossRefMathSciNet35.

McEvoy P.B., Coombs E.M. (1999) Biological control of plant invaders: regional patterns, field experiments, and structured population models. Ecol. Appl. 9, 387–401

36.

Menges E.S. (2000) Population viability analyses in plants: challenges and opportunities. Trends Ecol. Evol. 15, 51–56

CrossRef37.

Meyn S.P., Tweedie R.L. (1993) Markov Chains and Stochastic Stability. Springer, Berlin Heidelberg New York

MATH38.

Morris W., Doak D. (2002) Quantitative Conservation Biology. Sinauer, Sunderland

39.

R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org (2005)

40.

Ramula S., Kehtilä K. (2005) Importance of correlations among matrix entries in stochastic models in relation to number of transition matrices. Oikos 111, 9–18

CrossRef41.

Rees M., Sheppard A., Briese D. Mangel M. (1999) Evolution of size-dependent flowering in Onopordum illyricim: a quantitative assessment of the role of stochastic selection pressures. Am. Nat. 154, 628–651

CrossRef42.

Rees M., Childs D.Z., Rose K.E., Grubb P.J. (2004) Evolution of size dependent flowering in a variable environment: partitioning the effects of fluctuating selection. Proc. R. Soc. B 271, 471–475

CrossRef43.

Rees M., Childs D.Z., Metcalf J.C., Rose K.E., Sheppard A.W., Grubb P.J. (2006) Seed dormancy and delayed flowering in monocarpic plants: selective interactions in a stochastic environment. Am. Nat. 168, E53–E71

CrossRef44.

Rose K.E., Louda S., Rees M. (2005) Demographic and evolutionary impacts of native and invasive insect herbivores: a case study with Platte thistle, Cirsium canescens. Ecology 86, 453–465

45.

McCulloch C.E., Searle S.R. (2001) Generalized, Linear, and Mixed Models. Wiley, New York

MATH46.

Shea K., Kelly D. (1998) Estimating biocontrol agent impact with matrix models: Carduus nutans in New Zealand. Ecol. Appl. 8, 824–832

47.

Shea K., Kelly D., Sheppard A.W., Woodburn T.L. (2005) Context-dependent biological control of an invasive thistle. Ecology 86, 3174–3181

48.

Tuljapurkar S. (1990) Population Dynamics in Variable Environments. Springer, Berlin Heidelberg New york

MATH49.

Tuljapurkar S., Wiener P. (2000) Escape in time: stay young or age gracefully? Ecol. Model. 133, 143–159

CrossRef50.

Tuljapurkar S., Haridas C.V. (2006) Temporal autocorrelation and stochastic population growth. Ecol. Lett. 9, 327–337

CrossRef