, Volume 33, Issue 1, pp 16-25

Effect of Different Temperature Upshifts on Protein Synthesis by the Psychrotrophic Bacterium Pseudomonas fragi

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract.

Pseudomonas fragi, a psychrotroph bacterium involved in meat product spoilage, was shifted either from 5° to 20°C or 30°C and from 28° to 34°C. The heat-shocked cells in the mid-log phase rapidly reached the characteristic growth rate of the postshock temperature. The patterns of synthesized proteins were compared by autoradiography of two-dimensional gel electrophoregrams. The rates of synthesis, after transfer of cells from 5° to 30°C, 5° to 20°C, and 28° to 34°C, changed for 30, 26, and 21 proteins respectively, of which 19, 17, and 12 were increased respectively. Thirteen proteins changed similarly for the three treatments, and two of the seven overexpressed proteins were immunologically related to the Escherichia coli DnaK and GroEL heat shock proteins. From the four low-molecular-mass proteins, belonging to the family of DNA-binding cold shock proteins (CSPs) such as CS7.4, the major E. coli CSP [15], the amounts of C7.0 and C8.0 decreased rapidly after the upshifts, whereas that of E7.0 and E8.0 increased greatly.

Received: 22 November 1995 / Accepted: 22 December 1995