Skip to main content
Log in

Antimicrobial Activities of Some Actinomycetes Isolated from Different Rhizospheric Soils in Tunisia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fifty four isolates of actinomycetes were collected from four different rhizospheric soils: 18 strains from palm tree bark and soil, 12 strains from an olive field soil, 9 strains from a coastal forest, and 15 strains from an agriculture soil situated in the Algerian–Tunisian border (Oum Tboul). Based on morphological and cultural characters, the isolates were classified as Streptomyces (42 strains), Micromonospora (4 strains), Pseudonocardia (1 strain), Actinomadura (1 strain), Nocardia (1 strain), and non-Streptomyces (5 strains). More than half of the isolates inhibited at least one tested pathogenic microorganisms in liquid culture. In addition, antimicrobial activities of some strains were tested on solid culture. Several bioactive compounds were identified by liquid chromatography joined with low-resolution mass spectroscopy (LC/MS) and analysed by MEDINA’s database and by the dictionary of natural products Chapman & Hall. An interesting chlorinated compound with the molecular formula C20H37ClN2O4, produced by three different strains (SF1, SF2, and SF5), was subject of an attempted purification. However, it was demonstrated using confocal microscopy and LC/MS high resolution that this compound is produced only on solid culture. These three potential antimicrobial isolates showed high similarity with Streptomyces thinghirensis and Streptomyces lienomycini, in terms of morphological characteristics and 16S rRNA gene sequences (bootstrap 97 %). All these findings prove the high antimicrobial diversity of the studied soils. The potential of the selected and other relatively unexplored extreme environments constitute a source of interesting actinomycete strains producing several biologically active secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aouiche A, Sabaou N, Meklat A, Zitouni A, Mathieu F et al (2012) Antimicrobial activity of a Saharan Streptomyces spp. PAL111 strain against various clinical and toxinogenic microorganisms resistant to antibiotics. J Mycol Med 22(1):42–51

    Article  CAS  PubMed  Google Scholar 

  3. Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk HP, Clément C, Ouhdouch Y, van Wezel GP (2015) Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev 80(1):1–43. doi:10.1128/MMBR.00019-15

    Article  PubMed  Google Scholar 

  4. Barreto TR, da Silva AC, Soares AC, de Souza JT (2008) Population densities and genetic diversity of actinomycetes associated to the rhizosphere of the obroma cacao. Braz J Microbiol 39:464470

    Article  Google Scholar 

  5. Biemer JJ (1973) Antimicrobial susceptibility testing by the Kirby-Bauer disc diffusion method. Ann Clin Lab Sci 3:135–140

    CAS  PubMed  Google Scholar 

  6. Bonaldi M, Chen X, Kunova A, Pizzatti C, Saracchi M, Cortesi P (2015) Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Front Microbiol 6:6–25

    Article  Google Scholar 

  7. Boudjella H, Bouti K, Zitouni A, Mathieu F, Lebrihi A, Sabaou N (2007) Isolation and partial characterization of pigment-like antibiotics produced by a new strain of Streptosporangium isolated from an Algerian soil. J Appl Microbiol 103:228–236

    Article  CAS  PubMed  Google Scholar 

  8. Boudemagh A, Kitouni M, Boughachiche F, Hamdiken H, Oulmi L et al (2005) Isolation and molecular identification of actinomycete microflora, of some saharian soils of south east Algeria (Biskra, EL-Oued and Ourgla) study of antifungal activity of isolated strains. J Myco Med 15:39–44

    Article  Google Scholar 

  9. Buckingham J (2013) Dictionary of natural products on CD-ROM. Chapman & Hall, London

    Google Scholar 

  10. Duetz WA, Rüedi L, Hermann R, O’Connor K, Büchs J et al (2000) Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl Environ Microbiol 66:2641–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duraipandiyan V, Sasi AH, Islam VIH, Valanarasu M, Ignacimuthu S (2010) Antimicrobial properties of actinomycetes from the soil of Himalaya. J Myc Med 20:15–20

    Article  Google Scholar 

  12. Fernández E, Weiβbach U, Sánchez Reillo C, Brańa A, Mendez C, Rohr J, Sala JA (1998) Identification of two genes from Streptomyces argillaceus encoding glycosyl transferases involved in transfer of a disaccharide during biosynthesis of the antitumor drug mithramycin. J Bacteriol 180:4929–4937

    PubMed  PubMed Central  Google Scholar 

  13. Getha K, Vikineswary S, Wong W, Seki T, Ward A, Goodfellow M (2005) Evaluation of Streptomyces sp. strain g10 for suppression of Fusarium wilt and rhizosphere colonization in pot-grown banana plantlets. J Ind Microbiol Biotechnol 32:24–32

    Article  CAS  PubMed  Google Scholar 

  14. Graça AP, Bondoso J, Gaspar H, Xavier JR, Monteiro MC, de la Cruz M, Oves-Costales D et al (2013) Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae). PLoS One 8:e78992

    Article  PubMed  PubMed Central  Google Scholar 

  15. Han L, Zhang G, Miao G, Zhang X, Feng J (2015) Streptomyces kanasensis sp. nov., an antiviral glycoprotein producing actinomycete isolated from forest soil around Kanas lake of China. Curr Microbiol 71:627–631

    Article  CAS  PubMed  Google Scholar 

  16. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. John Innes Found, Norwich

    Google Scholar 

  17. Koyama R, Matsumoto A, Inahashi Y, Ōmura S, Takahashi Y (2012) Isolation of actinomycetes from the root of the plant, Ophiopogon japonicus, and proposal of two new species, Actinoallomurus liliacearum sp. nov. and Actinoallomurus vinaceus sp. nov. J Antibiot 00:1–6

    Google Scholar 

  18. Lee LH, Azman AS, Zainal N, Eng SK, Mutalib NS, Yin WF, Chan KG (2014) Microbacterium mangrovi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int J Syst Evol Microbiol 64:3513–3519

    Article  CAS  PubMed  Google Scholar 

  19. Manteca A, Sanchez J (2010) Streptomyces developmental cycle and secondary metabolite production. Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol 1:560–566

    Google Scholar 

  20. Murray PR, Brenner DJ, Bryant MP, Holt HG, Krieg NR, Moulder JW, Pfenning N et al (1984) Streptomycetes and related genera. Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2451–2508

    Google Scholar 

  21. Okazaki T (2006) Intrigued by actinomycete diversity. Actinomycetologica 20:15–22

    Article  CAS  Google Scholar 

  22. Pochon J, Tardieux P (1962) Techniques d’analyse en microbiologie du sol. Edition de la tourtourelle, Saint Mandé

    Google Scholar 

  23. Poomthongdee N, Duangmal K, Pathom-Aree W (2015) Acidophilic actinomycetes from rhizosphere soil: diversity and proprieties beneficial to plants. J Antibiot 68:106–114

    Article  CAS  PubMed  Google Scholar 

  24. Sultanpuram VR, Mothe T, Mohammed F (2015) Nocardioides solisilvae sp. nov., isolated from a forest soil. Antonie Van Leeuwenhoek 107:1599–1606

    Article  CAS  PubMed  Google Scholar 

  25. Trejo-Estrada S, Paszczynski A, Crawford D (1998) Antibiotics and enzymes produced by the biocontrol agent Streptomyces violaceusniger YCED-9. J Ind Microbiol Biotechnol 21:81–90

    Article  CAS  Google Scholar 

  26. Wellington EM, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS et al (2013) The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 13:155–165

    Article  CAS  PubMed  Google Scholar 

  27. Zhao H, Kassama Y, Young M, Kell DB, Goodacre R (2004) Differentiation of Micromonospora isolates from a coastal sediment in Wales on the basis of Fourier transform infrared spectroscopy, 16S rRNA sequence analysis, and the amplified fragment length polymorphism technique. Appl Environ Microbiol 70:6619–6627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Part of this work is done in A. Manteca’s Laboratory and funded by the European Research Council (ERC Starting Grant; Strp-differentiation 280304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Nour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, I., Oves, D., Manteca, A. et al. Antimicrobial Activities of Some Actinomycetes Isolated from Different Rhizospheric Soils in Tunisia. Curr Microbiol 73, 220–227 (2016). https://doi.org/10.1007/s00284-016-1053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1053-5

Keywords

Navigation