Skip to main content
Log in

Antimicrobial Activity of ILTI, a Kunitz‐Type Trypsin Inhibitor from Inga laurina (SW.) Willd

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Over the last few years, a growing number of proteinase inhibitors have been isolated from plants and particularly from seeds and have shown antimicrobial activity. A 20,000 Da serine peptidase inhibitor, named ILTI, was isolated from Inga laurina seeds and showed potent inhibitory enzymatic activity against trypsin. The aim of this study was to determine the effects of ILTI on the growth of pathogenic and non-pathogenic microorganisms. We observed that ILTI strongly inhibited in particular the growth of Candida tropicalis and Candida buinensis, inducing cellular agglomeration. However, it was ineffective against human pathogenic bacteria. We also investigated the potential of ILTI to permeabilize the plasma membrane of yeast cells. C. tropicalis and C. buinensis were incubated for 24 h with the ILTI at different concentrations, which showed that this inhibitor induced changes in the membranes of yeast cells, leading to their permeabilization. Interestingly, ILTI induced the production of reactive oxygen species (ROS) in C. tropicalis and C. buinensis cells. Finally, ILTI was coupled with fluorescein isothiocyanate, and subsequent treatment of C. tropicalis and C. buinensis with DAPI revealed the presence of the labeled protein in the intracellular spaces. In conclusion, our results indicated the ability of peptidase inhibitors to induce microbial inhibition; therefore, they might offer templates for the design of new antifungal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aerts AM, Francois IEJA, Meert EMK, Li QT, Cammue BPA, Thevissen K (2007) The antifungal activity of Rs-AFP2, a plant defensin from Raphanus sativus, involves the induction of reactive oxygen species in Candida albicans. J Mol Microbiol Biotechnol 13:243–247

    Article  CAS  PubMed  Google Scholar 

  2. Broekaert WF, Terras FRG, Cammue BPA, Vanderleyden J (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69:55–60

    Article  CAS  Google Scholar 

  3. Casaretto JA, Zuniga GE, Corcuera LJ (2004) Abscisic acid and jasmonic acid affect proteinase inhibitor activities in barley leaves. J Plant Physiol 161:389–396

    Article  CAS  PubMed  Google Scholar 

  4. Chilosi G, Caruso C, Caporale C, Leonardi L, Buzi A, Nobile M, Magro P, Buonocore V (2000) Antifungal activity of a Bowman-Birk type trypsin inhibitor from wheat kernel. J Phytopathol 148:477–481

    Article  CAS  Google Scholar 

  5. Clemente A, Domoney C (2006) Biological significance of polymorphism in legume protease inhibitors from the Bowman-Birk family. Curr Protein Pept Sci 7:201–216

    Article  CAS  Google Scholar 

  6. CLSI (2009) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 8th edn. CLSI document M07-A8

  7. De Leo F, Volpicella M, Licciulli F, Liuni S, Gallerani R, Ceci LR (2002) PLANT-PIs: a database for plant protease inhibitors and their genes. Nucleic Acids Res 30:347–348

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frees D, Brondsted L, Ingmer H (2013) Bacterial proteases and virulence. Subcell Biochem 66:161–192

    Article  CAS  PubMed  Google Scholar 

  9. Haq SK, Atif SM, Khan RH (2004) Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: natural and engineered phytoprotection. Arch Biochem Biophys 431:145–159

    Article  CAS  PubMed  Google Scholar 

  10. Joshi RS, Manasi M, Suresh CG, Gupta VS, Giri AP (2013) Complementation of intramolecular interactions for structural–functional stability of plant serine proteinase inhibitors. Biochim et Biophys Acta 11:5087–5094

    Article  Google Scholar 

  11. Kim JY, Park SC, Kim MH, Lim HT, Park Y, Hahm KS (2005) Antimicrobial activity studies on a trypsin-chymotrypsin protease inhibitor obtained from potato. Biochem Biophys Res Commun 330:921–927

    Article  CAS  PubMed  Google Scholar 

  12. Kim JY, Park SC, Hwang I, Cheong H, Nah JW, Hahm KS, Park Y (2009) Protease inhibitors from plants with antimicrobial activity. Int J Mol Sci 10:2860–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lima TB, Silva ON, Migliolo L, Souza-filho CR, Gonçalves EG, Vasconcelos IM, Oliveira JT, Amaral AC, Franco OL (2011) A Kunitz proteinase inhibitor from corms of Xanthosoma blandum. J Nat Prod 74:969–975

    Article  CAS  PubMed  Google Scholar 

  14. Lobo DS, Pereira IB, Fragel-Madeira L, Medeiros LN, Cabral LM, Faria J, Bellio M, Campos RC, Linden R, Kurtenbach E (2007) Antifungal Pisum sativum defensin 1 interacts with Neurospora crassa cyclin F related to the cell cycle. Biochem 46:987–996

    Article  CAS  Google Scholar 

  15. Lopes JLS, Valadares NF, Moraes DI, Rosa JC, Araújo HSS, Beltramini LM (2009) Physicochemical and antifungal properties of protease inhibitors from Acacia plumose. Phytochemistry 70:871–879

    Article  CAS  PubMed  Google Scholar 

  16. Macedo MLR, Garcia VA, Freire MGM, Richardson M (2007) Characterization of a Kunitz trypsin inhibitor with a single disulfide bridge from seeds of Inga laurina (SW.) Wild. Phytochemistry 68:1104–1111

    Article  CAS  PubMed  Google Scholar 

  17. Macedo MLR, Freire Md, Franco OL, Migliolo L, de Oliveira CF (2011) Practical and theoretical characterization of Inga laurina Kunitz inhibitor on the control of Homalinotus coriaceus. Comp Biochem Physiol B 158:164–172

    Article  PubMed  Google Scholar 

  18. Mello EO, Ribeiro SFF, Carvalho AO, Santos IS, Da Cunha M, Santa-Catarina C, Gomes VM (2011) Antifungal activity of PvD1 defensin involves plasma membrane permeabilization, inhibition of medium acidification, and induction of ROS in fungi cells. Curr Microbiol 62:1209–1217

    Article  CAS  PubMed  Google Scholar 

  19. Monod M, Capoccia S, Léchenne B, Zaugg C, Holdom M, Jousson O (2002) Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419

    Article  CAS  PubMed  Google Scholar 

  20. Oliva MLV, Silva MCC, Sallai RC, Brito MV, Sampaio MU (2010) A novel subclassification for Kunitz proteinase inhibitors from leguminous seeds. Biochimie 92:1667–1673

    Article  CAS  PubMed  Google Scholar 

  21. Pomales-Lebrón A, Fernández C (1952) A method for estimating the number of bacteria in liquids and tissues. J Bacteriol 64:837–839

    PubMed  PubMed Central  Google Scholar 

  22. Ramos Vda S, Cabrera OG, Camargo EL, Ambrósio AB, Vidal RO, da Silva DS, Guimarães LC, Marangoni S, Parra JR, Pereira GA, Macedo ML (2012) Molecular cloning and insecticidal effect of Inga laurina trypsin inhibitor on Diatraea saccharalis and Heliothis virescens. Comp Biochem Physiol C 156:148–158

    Google Scholar 

  23. Ribeiro SFF, Carvalho AO, Da Cunha M, Rodrigues R, Cruz LP, Melo VMM, Vasconcelos IM, Melo ETJ, Gomes VM (2007) Isolation and characterization of a novel peptides from chilli pepper seeds: antimicrobial activities against pathogenic yeasts. Toxicon 50:600–611

    Article  CAS  PubMed  Google Scholar 

  24. Ribeiro SFF, Silva MS, Cunha M, Carvalho AO, Dias GB, Rabelo G, Mello EO, Santa-Catarina C, Rodrigues R, Gomes VM (2012) Capsicum annuum L. trypsin inhibitor as a template scaffold for new drug development against pathogenic yeast. Antonie Van Leeuwenhoek 101:657–670

    Article  CAS  PubMed  Google Scholar 

  25. Ribeiro SFF, Fernandes KVS, Santos IS, Taveira GB, Carvalho AO, Lopes JL, Beltramini LM, Rodrigues R, Vasconcelos IM, Da Cunha M, Souza-Filho GA, Gomes VM (2013) New small proteinase inhibitors from Capsicum annuum seeds: characterization, stability, spectroscopic analysis and a cDNA cloning. Biopolymers 100:132–140

    Article  CAS  PubMed  Google Scholar 

  26. Richardson M (1977) The proteinase inhibitors of plants and microorganisms. Phytochemistry 16:159–169

    Article  CAS  Google Scholar 

  27. Satheesh LS, Murigan K (2011) Antimicrobial activity of protease inhibitor from leaves of Coccinia grandis (L.) Voigt. Indian J Exp Biol 49:366–374

    CAS  PubMed  Google Scholar 

  28. Shewry PR, Lucas JA (1997) Plant proteins that confer resistance to pest and pathogens. Adv Bot Res 26:135–192

    Article  CAS  Google Scholar 

  29. Thevissen K, Terras FRG, Broekaert WF (1999) Permeabilization of fungal membranes by plant defensins inhibits fungal growth. Appl Environ Microbiol 62:5451–5458

    Google Scholar 

  30. Yang X, Li J, Wang X, Fang W, Bidochka MJ, She R, Xiao Y, Pei Y (2006) Psc-AFP, an antifungal protein with trypsin inhibitor activity from Psoralea corylifolia seeds. Peptides 27:1726–1731

    Article  CAS  PubMed  Google Scholar 

  31. Zottich U, Da Cunha M, Carvalho AO, Dias GB, Silva NC, Vasconcelos IM, Gomes VM (2013) An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi. Biochim Biophys Acta 1830:3509–3516

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support of the Brazilian agencies CNPq (Herbal Medicines No. 73/2013; Rede Pró-Centro-Oeste), FINEP, FAPERJ, FUNDECT, CNPq and CAPES (Toxicology No. 063/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lígia R. Macedo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macedo, M.L.R., Ribeiro, S.F.F., Taveira, G.B. et al. Antimicrobial Activity of ILTI, a Kunitz‐Type Trypsin Inhibitor from Inga laurina (SW.) Willd. Curr Microbiol 72, 538–544 (2016). https://doi.org/10.1007/s00284-015-0970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0970-z

Keywords

Navigation