Skip to main content
Log in

Fluorescent Pseudomonads in the Phyllosphere of Wheat: Potential Antagonists Against Fungal Phytopathogens

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fluorescent pseudomonads isolated from wheat leaves were characterized regarding their antagonistic potential and taxonomy in relation to protect crop plants from infestation by Fusarium and Alternaria fungi causing diseases in wheat. Using a dual culture assay, inhibition of fungal growth was found for 40 isolates of 175 fluorescent pseudomonads. Twenty-two of the antagonists were able to suppress strains of Fusarium as well as Alternaria. By means of real-time qPCR, the phlD gene encoding the antibiotic 2,4-diacetylphloroglucinol was detected in 20 isolates. On the basis of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry spectral patterns, the isolates with antagonistic activity were assigned to the phylogenetic subgroup Pseudomonas fluorescens and the closely related Pseudomonas gessardii subgroup. The results of the study suggest that pseudomonads in the phyllosphere of crop plants may possibly contribute to natural plant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bottalico A, Perrone G (2002) Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur J Plant Pathol 108:124–611

    Article  Google Scholar 

  2. Fakhouri W, Buchenauer H (2003) Characteristics of fluorescent pseudomonad isolates towards controlling of tomato wilt caused by Fusarium oxysporum f. sp. lycopersici. J Plant Dis Protect 110:143–156

    CAS  Google Scholar 

  3. Funnell-Harris DL, Sattler SE, Pedersen JF (2013) Characterization of fluorescent Pseudomonas spp. associated with roots and soil of two sorghum genotypes. Eur J Plant Pathol 136:469–481

    Article  CAS  Google Scholar 

  4. Gould WD, Hagedorn C, Bardinelli TR, Zablotowicz RM (1985) New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl Environ Microbiol 49:28–32

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  6. Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Article  CAS  PubMed  Google Scholar 

  7. Hotta Y, Teramoto K, Sato H, Yoshikawa H, Hosoda A, Tamura H (2010) Classification of genus Pseudomonas by MALDI-TOF MS based on ribosomal protein coding in S10spcalpha operon at strain level. J Proteome Res 9:6722–6728

    Article  CAS  PubMed  Google Scholar 

  8. Khan MR, Fischer S, Egan D, Doohan FM (2006) Biological control of Fusarium seedling blight disease of wheat and barley. Phytopathol 96:386–394

    Article  CAS  Google Scholar 

  9. Korn U, Müller T, Ulrich A, Müller MEH (2011) Impact of aggressiveness of Fusarium graminearum and F. culmorum isolates on yield parameters and mycotoxin production in wheat. Mycotox Res 27:195–206

    Article  CAS  Google Scholar 

  10. Kucheryava N, Fiss M, Auling G, Kroppenstedt RM (1999) Isolation and characterization of epiphytic bacteria from the phyllosphere of apple, antagonistic in vitro to Venturia inaequalis, the causal agent of apple scab. Syst Appl Microbiol 22:472–478

    Article  CAS  Google Scholar 

  11. Landa BB, Mavrodi OV, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68:3226–3237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Legard DE, McQuilken MP, Whipps JM, Fenlon JS, Fermor TR, Thompson IP et al (1994) Studies of seasonal changes in the microbial populations on the phyllosphere of spring wheat as a prelude to the release of a genetically modified microorganism. Agric Ecosyst Environ 50:87–101

    Article  Google Scholar 

  13. Logrieco A, Moretti A, Solfrizzo M (2009) Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin J 2:129–140

    Article  CAS  Google Scholar 

  14. McMullen M, Bergstrom G, de Wolf E, Dill-Macky R, Hershman D, Shaner G et al (2012) A united effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis 96:1712–1728

    Article  Google Scholar 

  15. McSpadden Gardener BB (2007) Diversity and Ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathol 97:220–226

    Article  Google Scholar 

  16. Meyer JM, Geoffroy VA, Baida N, Gardan L, Izard D, Lemanceau P et al (2002) Siderophore typing, a powerful tool for the identification of fluorescent and nonfluorescent pseudomonads. Appl Environ Microbiol 68:2745–2753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530

    CAS  PubMed  Google Scholar 

  18. Müller MEH, Korn U (2013) Alternaria mycotoxins in wheat—a 10 years survey in the Northeast of Germany. Food Control 34:191–197

    Article  Google Scholar 

  19. Müller MEH, Steier I, Köppen R, Siegel D, Proske M, Korn U et al (2012) Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production. J Appl Microbiol 113:874–887

    Article  PubMed  Google Scholar 

  20. Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87:2–14

    Article  PubMed Central  PubMed  Google Scholar 

  21. Naik MK, Rajalaxmi K, Rangeshwaran R, Amaresh YS, Reddy MS (2013) Search for 2,4 DAPG positive gene in fluorescent Pseudomonas and their exploitation for sustainable disease management. In: Reddy MS, Ilao RI, Faylon PS, Dar WD, Sayed R, Sudini H et al (eds) Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture. Proceedings of 3rd Asian conference on plant growth-promoting rhizobacteria (PGPR) and other microbials. Manila, Philipines, 21–24 Apr, 2013, pp 152–163

  22. Natsch A, Keel C, Pfirter HA, Haas D, Défago G (1994) Contribution of the global regulator gene gacA to persistence and dissemination of Pseudomonas fluorescens biocontrol strain CHA0 introduced into soil microcosms. Appl Environ Microbiol 60:2553–2560

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  25. Ramettea A, Frapolli M, Fischer-Le Saux M, Gruffaz C, Meyer J-M, Défago G et al (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst Appl Microbiol 34:180–188

    Article  Google Scholar 

  26. Schlaeppi K, Bulgarelli D (2015) The plant microbiome at work. Mol Plant Microbe Interact 28:212–217

    Article  CAS  PubMed  Google Scholar 

  27. Schroth MN, Hildebrand DC, Panopoulos N (1992) Phytopathogenic pseudomonads and related plant-associated pseudomonads. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The procaryotes, 2nd edn. Springer, New York, pp 3104–3131

    Google Scholar 

  28. Shirzad A, Fallahzadeh-Mamaghani V, Pazhouhandeh M (2012) Antagonistic potential of fluorescent pseudomonads and control of crown and root rot of cucumber caused by Phythophtora drechsleri. Plant Pathol J 28:1–9

    Article  CAS  Google Scholar 

  29. Stockwell VO, Jonhson KB, Loper JE (2002) Biological control of fire blight: understanding interactions among introduced and indigenous microbial communities. In: Lindow SE, Hecht-Poinar EI, Elliot VJ (eds) Phyllosphere microbiology. APS, St. Paul, pp 225–239

    Google Scholar 

  30. Tóth EM, Schumann P, Borsodi AK, Kéki Z, Kovács AL, Márialigeti K (2008) Wohlfahrtiimonas chitiniclastica gen. nov., sp. nov., a new γ-proteobacterium isolated from Wohlfahrtia magnifica (Diptera: Sarcophagidae). Int J Syst Evol Microbiol 58:976–998

    Article  PubMed  Google Scholar 

  31. Vučković JN, Brkljača JS, Bodroža-Solarov MI, Bagi FF, Stojšin VB, Ćulafić JN et al (2012) Alternaria spp. on small grains. Food Feed Res 39:79–88

    Google Scholar 

  32. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S et al (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonasspp. in the defense of plant roots. Plant Biol 9:4–20

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida S, Ohba A, Liang Y-M, Koitabashi M, Tsushima S (2012) Specificity of Pseudomonas isolates on healthy and Fusarium head blight-infected spikelets of wheat heads. Microb Ecol 64:214–225

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Anne Winding (Aarhus University) for providing Pseudomonas protegens CHA0 and Birgit Wernitz as well as Beate Selch for excellent technical assistance. This work was supported by the Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft and the Ministerium für Wissenschaft, Forschung und Kultur des Landes Brandenburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Müller.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, T., Behrendt, U., Ruppel, S. et al. Fluorescent Pseudomonads in the Phyllosphere of Wheat: Potential Antagonists Against Fungal Phytopathogens. Curr Microbiol 72, 383–389 (2016). https://doi.org/10.1007/s00284-015-0966-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0966-8

Keywords

Navigation