Skip to main content
Log in

Ecologically Driven Competence for Exogenous DNA Uptake in Yeast

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Unlike prokaryotes, eukaryotic organisms do not seem to be equipped with natural cell process(es) designated for exogenous DNA uptake. However, it is barely known that under laboratory circumstances resembling wild fungal environment(s), at least some lower eukaryotes could become naturally competent for exogenous DNA uptake. Thus, apart from the known fact that non-manipulated cells of yeast Saccharomyces cerevisiae take exogenous DNA by conjugation with certain bacteria, there are also mechanical and physiological mechanisms enabling their transformation under environmental conditions. This clearly shows that lower eukaryotes are amenable to transformation without applying man-made technology (i.e., naturally). However, this topic failed to raise critical scientific interest. Therefore, this review aims to scrutinize the overall implication of the phenomenon stressing its fundamental and applicable importance. It also summarizes all axiomatic laboratory circumstances/vehicles hitherto known to provoke yeast competence naturally and critically discusses plausible mechanisms behind. Possible pathways underlying the phenomenon are emphasized and a unifying model is proposed. This story potentially spans several different research fields, from evolutionary genetics to genetic transformation technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. [36] used protocol described in [25]; Hayama et al. described the transforming cells as “intact and flawless” since their general intention was to develop a novel transformation approach relying exactly on minimal or no manipulation.

  2. [82] used protocol described in [76]—protocols from [25] and [76] relay solely on early- to mid-log cells and PEG.

  3. Yeast cells were grown in rich medium to concentration of 1 × 108 cells/ml before being washed and challenged by free DNA in 1 M sucrose at a density of 1.5 × 109 cells/ml.

References

  1. Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr. Genet. 17:97–103

    Article  CAS  PubMed  Google Scholar 

  2. van Attikum H, Bundock P, Hooykaas PJ (2001) Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration. EMBO J. 20:6550–6558

    Article  PubMed Central  PubMed  Google Scholar 

  3. Beggs JD (1978) Transformation of yeast by a replicating hybrid plasmid. Nature 275:104–109

    Article  CAS  PubMed  Google Scholar 

  4. Benders GA, Noskov VN, Denisova EA, Lartigue C, Gibson DG, Assad-Garcia N, Chuang RY, Carrera W, Moodie M, Algire MA, Phan Q, Alperovich N, Vashee S, Merryman C, Venter JC, Smith HO, Glass JI, Hutchison CA III (2010) Cloning whole bacterial genomes in yeast. Nucleic Acids Res. 38:2558–2569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bermejo C, Haerizadeh F, Sadoine MS, Chermak D, Frommer WB (2013) Differential regulation of glucose transport activity in yeast by specific cAMP signatures. Biochem. J. 452:489–497

    Article  CAS  PubMed  Google Scholar 

  6. Birner R, Burgermeister M, Schneiter R, Daum G (2001) Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae. Mol. Biol. Cell 12:997–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Broach JR, Strathern JN, Hicks JB (1979) Transformation in yeast: development of a hybrid cloning vector and isolation of the CAN1 gene. Gene 8:121–133

    Article  CAS  PubMed  Google Scholar 

  8. Bruschi CV, Comer AR, Howe GA (1987) Specificity of DNA uptake during whole cell transformation of S. cerevisiae. Yeast 3:131–137

    Article  CAS  PubMed  Google Scholar 

  9. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14:3206–3214

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Cappello MS, Poltronieri P, Blaiotta G, Zacheo G (2010) Molecular and physiological characteristics of a grape yeast strain containing atypical genetic material. Int. J. Food Microbiol. 144:72–80

    Article  CAS  PubMed  Google Scholar 

  11. Chaustova L, Zimkus A (2004) Relationship between the efficiency of yeast Saccharomyces cerevisiae transformation and cell cycle. Biologija (Vilnius) 2:29–32

    Google Scholar 

  12. Chaustova L, Miliukienė V, Zimkus A, Razumas V (2008) Metabolic state and cell cycle as determinants of facilitated uptake of genetic information by yeast Saccharomyces cerevisiae. Cent Eur. J. Biol. 3:417–421

    Article  Google Scholar 

  13. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat. Rev. Microbiol. 2:241–249

    Article  CAS  PubMed  Google Scholar 

  14. Claverys JP, Martin B (2003) Bacterial “competence” genes: signatures of active transformation, or only remnants? Trends Microbiol. 11:161–165

    Article  CAS  PubMed  Google Scholar 

  15. Costanzo M, Fox TD (1988) Transformation of yeast by agitation with glass beads. Genetics 120:667–670

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Denamur E, Lecointre G, Darlu P, Tenaillon O, Acquviva C, Sayada C, Sunjevaric I, Rothstein R, Elion J, Taddei F, Radman M, Matic I (2000) Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103:711–721

    Article  CAS  PubMed  Google Scholar 

  17. Dubnau D (1999) DNA uptake in bacteria. Annu. Rev. Microbiol. 53:217–244

    Article  CAS  PubMed  Google Scholar 

  18. Elkhaimi M, Kaadige MR, Kamath D, Jackson JC, Biliran H Jr, Lopes JM (2000) Combinatorial regulation of phospholipid biosynthetic gene expression by the UME6, SIN3 and RPD3 genes. Nucleic Acids Res. 28:3160–3167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Fitzpatrick DA (2012) Horizontal gene transfer in fungi. FEMS Microbiol. Lett. 329:1–8

    Article  CAS  PubMed  Google Scholar 

  20. François J, Eraso P, Gancedo C (1987) Changes in the concentration of cAMP, fructose 2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur. J. Biochem. 164:369–373

    Article  PubMed  Google Scholar 

  21. Fukumaru K, Yoshida K (2000) Trans-kingdom conjugation between bacterial chromosome-less mini-cells and yeasts. Nucleic Acids Symp. Ser. 44:183–184

    Article  PubMed  Google Scholar 

  22. Gerbaud C, Fournier P, Blanc H, Aigle M, Heslot H, Guerineau M (1979) High frequency of yeast transformation by plasmids carrying part or entire 2-µm yeast plasmid. Gene 5:233–253

    Article  CAS  PubMed  Google Scholar 

  23. Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot. Cell 4:1102–1115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Harris G, Thompson CC (1960) Alleged transformation of yeast. Nature 188:1212–1213

    Article  CAS  PubMed  Google Scholar 

  25. Hayama Y, Fukuda Y, Kawai S, Hashimoto W, Murata K (2002) Extremely simple, rapid and highly efficient transformation method for the yeast Saccharomyces cerevisiae using glutathione and early log phase cells. J. Biosci. Bioeng. 94:166–171

    Article  CAS  PubMed  Google Scholar 

  26. Hayman GT, Bolen PL (1993) Movement of shuttle plasmids from Escherichia coli into yeasts other than Saccharomyces cerevisiae using trans-kingdom conjugation. Plasmid 30:251–257

    Article  CAS  PubMed  Google Scholar 

  27. Heinemann JA, Sprague GF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340:205–209

    Article  CAS  PubMed  Google Scholar 

  28. Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc. Natl Acad. Sci. U.S.A. 75:1929–1933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hooykaas PJ, den Dulk-Ras A, Bundock P, Soltani J, van Attikum H, van Heusden GP (2006) Yeast (Saccharomyces cerevisiae). Methods Mol. Biol. 344:465–473

    CAS  PubMed  Google Scholar 

  30. Hsiao CL, Carbon J (1979) High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc. Natl Acad. Sci. U.S.A. 76:3829–3833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Inomata K, Nishikawa M, Yoshida K (1994) The yeast Saccharomyces kluyveri as a recipient eukaryote in transkingdom conjugation: behavior of transmitted plasmids in transconjugants. J. Bacteriol. 176:4770–4773

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Jaspersen SL, Ghosh S (2012) Nuclear envelope insertion of spindle pole bodies and nuclear pore complexes. Nucleus 3:226–236

    Article  PubMed Central  PubMed  Google Scholar 

  33. Johnsborg O, Eldholm V, Håvarstein LS (2007) Natural genetic transformation: prevalence, mechanisms and function. Res. Microbiol. 158:767–778

    Article  CAS  PubMed  Google Scholar 

  34. Johnston J, Hilger F, Mortimer R (1981) Variation in frequency of transformation by plasmid YRp7 in Saccharomyces cerevisiae. Gene 16:325–329

    Article  CAS  PubMed  Google Scholar 

  35. Karas BJ, Jablanovic J, Irvine E, Sun L, Ma L, Weyman PD, Gibson DG, Glass JI, Venter JC, Hutchison CA III, Smith HO, Suzuki Y (2014) Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat. Protoc. 9:743–750

    Article  CAS  PubMed  Google Scholar 

  36. Kawai S, Pham T, Nguyen HT, Nankai H, Utsumi T, Fukuda Y, Murata K (2004) Molecular insights on DNA delivery into Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 317:100–107

    Article  CAS  PubMed  Google Scholar 

  37. Kawai S, Phan TA, Kono E, Harada K, Okai C, Fukusaki E, Murata K (2009) Transcriptional and metabolic response in yeast Saccharomyces cerevisiae cells during polyethylene glycol-dependent transformation. J. Basic Microbiol. 49:73–81

    Article  CAS  PubMed  Google Scholar 

  38. Kawai S, Hashimoto W, Murata K (2010) Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioeng. Bugs. 1:395–403

    Article  PubMed Central  PubMed  Google Scholar 

  39. Keszenman-Pereyra D, Hieda K (1988) A colony procedure for transformation of Saccharomyces cerevisiae. Curr. Genet. 13:21–23

    Article  CAS  PubMed  Google Scholar 

  40. Khan NC, Sen S (1974) Genetic transformation in yeasts. J. Gen. Microbiol. 83:237–250

    Article  CAS  PubMed  Google Scholar 

  41. Knop M (2006) Evolution of the hemiascomycete yeasts: on life styles and the importance of inbreeding. BioEssays 28:696–708

    Article  CAS  PubMed  Google Scholar 

  42. Kohiyama M, Hiraga S, Matic I, Radman M (2003) Bacterial sex: playing voyeurs 50 years later. Science 301:802–803

    Article  CAS  PubMed  Google Scholar 

  43. Koufopanou V, Goddard MR, Burt A (2002) Adaptation for horizontal transfer in a homing endonuclease. Mol. Biol. Evol. 19:239–246

    Article  CAS  PubMed  Google Scholar 

  44. Krüger NJ, Stingl K (2011) Two steps away from novelty—principles of bacterial DNA uptake. Mol. Microbiol. 80:860–867

    Article  PubMed  Google Scholar 

  45. Lacroix B, Tzfira T, Vainstein A, Citovsky V (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet. 22:29–37

    Article  CAS  PubMed  Google Scholar 

  46. Lisby M, Rothstein R (2009) Choreography of recombination proteins during the DNA damage response. DNA Repair (Amst) 8:1068–1076

    Article  CAS  Google Scholar 

  47. Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58:563–602

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Ma P, Gonçalves T, Maretzek A, Dias MC, Thevelein JM (1997) The lag phase rather than the exponential-growth phase on glucose is associated with a higher cAMP level in wild-type and cAPK-attenuated strains of the yeast Saccharomyces cerevisiae. Microbiology 143:3451–3459

    Article  CAS  PubMed  Google Scholar 

  49. Manivasakam P, Schiestl RH (1993) High efficiency transformation of Saccharomyces cerevisiae by electroporation. Nucleic Acids Res. 21:4414–4415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Maynard Smith J, Dowson CG, Spratt BG (1991) Localized sex in bacteria. Nature 349:29–31

    Article  Google Scholar 

  51. Mitrikeski PT (2013) Yeast competence for exogenous DNA uptake: towards understanding its genetic component. Antonie Van Leeuwenhoek 103:1181–1207

    Article  CAS  PubMed  Google Scholar 

  52. Mitrikeski PT (2015) Pathways and mechanisms of yeast competence: a new frontier of yeast genetics. In: van den Berg MA, Maruthachalam K (eds) Genetic Transformation Systems in Fungi, vol 1., Fungal BiologySpringer International Publishing, Switzerland, pp 223–237

    Chapter  Google Scholar 

  53. Mahmood A, Kimura T, Takenaka M, Yoshida K (1996) The construction of novel mobilizable YAC plasmids and their behavior during trans-kingdom conjugation between bacteria and yeasts. Genet. Anal. 13:25–31

    Article  CAS  PubMed  Google Scholar 

  54. Neukamm B, Stahl U, Lang C (2002) Endocytosis is involved in DNA uptake in yeast. Biochim. Biophys. Acta 1572:67–76

    Article  CAS  PubMed  Google Scholar 

  55. Neumann E, Kakorin S, Tsoneva I, Nikolova B, Tomov T (1996) Calcium-mediated DNA adsorption to yeast cells and kinetics of cell transformation by electroporation. Biophys. J. 71:868–877

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Nevoigt E, Fassbender A, Stahl U (2000) Cells of the yeast Saccharomyces cerevisiae are transformable by DNA under non-artificial conditions. Yeast 16:1107–1110

    Article  CAS  PubMed  Google Scholar 

  57. Nikawa J, Sass P, Wigler M (1987) Cloning and characterization of the low-affinity cyclic AMP phosphodiesterase gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3629–3636

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Nishikawa M, Yoshida K (1998) Trans-kingdom conjugation offers a powerful gene targeting tool in yeast. Genet. Anal. 14:65–73

    Article  CAS  PubMed  Google Scholar 

  59. Nishikawa M, Suzuki K, Yoshida K (1990) Structural and functional stability of IncP plasmids during stepwise transmission by trans-kingdom mating: promiscuous conjugation of Escherichia coli and Saccharomyces cerevisiae. Jpn. J. Genet. 65:323–334

    Article  CAS  PubMed  Google Scholar 

  60. Novo M, Bigey F, Beyne E, Galeote V, Gavory F, Mallet S, Cambon B, Legras JL, Wincker P, Casaregola S, Dequin S (2009) Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proc. Natl Acad. Sci. U.S.A. 106:16333–16338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Oppenoorth WF (1960) Modification of the hereditary character of yeast by ingestion of cell-free extracts. Antonie Van Leeuwenhoek 26:129–168

    Article  CAS  PubMed  Google Scholar 

  62. Oppenoorth WF (1962) Transformation in yeast: evidence or a real genetic change by the action of DNA. Nature 193:706

    Article  CAS  PubMed  Google Scholar 

  63. Pham TA, Kawai S, Murata K (2011) Visualization of the synergistic effect of lithium acetate and single-stranded carrier DNA on Saccharomyces cerevisiae transformation. Curr. Genet. 57:233–239

    Article  CAS  PubMed  Google Scholar 

  64. Pham TA, Kawai S, Kono E, Murata K (2011) The role of cell wall revealed by the visualization of Saccharomyces cerevisiae transformation. Curr. Microbiol. 62:956–961

    Article  CAS  PubMed  Google Scholar 

  65. Piers KL, Heath JD, Liang X, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl Acad. Sci. U.S.A. 93:1613–1618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Riechers SP, Stahl U, Lang C (2009) Defects in intracellular trafficking and endocytotic/vacuolar acidification determine the efficiency of endocytotic DNA uptake in yeast. J. Cell. Biochem. 106:327–336

    Article  CAS  PubMed  Google Scholar 

  67. Rivin CJ, Fangman WL (1980) Cell cycle phase expansion in nitrogen-limited cultures of Saccharomyces cerevisiae. J. Cell Biol. 85:96–107

    Article  CAS  PubMed  Google Scholar 

  68. Robertson AS, Smythe E, Ayscough KR (2009) Functions of actin in endocytosis. Cell. Mol. Life Sci. 66:2049–2065

    Article  CAS  PubMed  Google Scholar 

  69. Ruderfer DM, Pratt SC, Seidel HS, Kruglyak L (2006) Population genomic analysis of outcrossing and recombination in yeast. Nat. Genet. 38:1077–1081

    Article  CAS  PubMed  Google Scholar 

  70. Russell M, Bradshaw-Rouse J, Markwardt D, Heideman W (1993) Changes in gene expression in the Ras/adenylate cyclase system of Saccharomyces cerevisiae: correlation with cAMP levels and growth arrest. Mol. Biol. Cell 4:757–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Sawasaki Y, Inomata K, Yoshida K (1996) Trans-kingdom conjugation between Agrobacterium tumefaciens and Saccharomyces cerevisiae, a bacterium and a yeast. Plant Cell Physiol. 37:103–106

    Article  CAS  PubMed  Google Scholar 

  72. Sikorski RS, Michaud WA, Tugendreich S, Hieter P (1995) Allele shuffling: conjugational transfer, plasmid shuffling and suppressor analysis in Saccharomyces cerevisiae. Gene 155:51–59

    Article  CAS  PubMed  Google Scholar 

  73. Slater ML, Sharrow SO, Gart JJ (1977) Cell cycle of Saccharomyces cerevisiae in populations growing at different rates. Proc. Natl Acad. Sci. U.S.A. 74:3850–3854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Smith JM (1986) Evolution: contemplating life without sex. Nature 324:300–301

    Article  CAS  PubMed  Google Scholar 

  75. Soltani J, van Heusden GP, Hooykaas PJ (2009) Deletion of host histone acetyltransferases and deacetylases strongly affects Agrobacterium-mediated transformation of Saccharomyces cerevisiae. FEMS Microbiol. Lett. 298:228–233

    Article  CAS  PubMed  Google Scholar 

  76. Stateva LI, Oliver SG, Trueman LJ, Venkov PV (1991) Cloning and characterization of a gene which determines osmotic stability in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:4235–4243

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Stegemann S, Bock R (2009) Exchange of genetic material between cells in plant tissue grafts. Science 324:649–651

    Article  CAS  PubMed  Google Scholar 

  78. Struhl K, Stinchcomb DT, Scherer S, Davis RW (1979) High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl Acad. Sci. U.S.A. 76:1035–1039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Suzuki K, Yoshida K (1986) Stepwise transformation in Saccharomyces cerevisiae yeast: construction of strains for transformation and subsequent cytoductive transfer of plasmid DNA with mitochondria. Plant Cell Physiol. 27:801–808

    CAS  Google Scholar 

  80. Takken FL, Van Wijk R, Michielse CB, Houterman PM, Ram AF, Cornelissen BJ (2004) A one-step method to convert vectors into binary vectors suited for Agrobacterium-mediated transformation. Curr. Genet. 45:242–248

    Article  CAS  PubMed  Google Scholar 

  81. Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 33:904–918

    Article  CAS  PubMed  Google Scholar 

  82. Tomlin GC, Hamilton GE, Gardner DCJ, Walmsley RM, Stateva LI, Oliver SG (2000) Suppression of sorbitol dependence in a strain bearing a mutation in the SRB1/PSA1/VIG9 gene encoding GDP-mannose pyrophosphorylase by PDE2 overexpression suggests a role for the Ras/cAMP signal-transduction pathway in the control of yeast cell-wall biogenesis. Microbiology 146:2133–2146

    CAS  PubMed  Google Scholar 

  83. Tsai IJ, Bensasson D, Burt A, Koufopanou V (2008) Population genomics of the wild yeast Saccharomyces paradoxus: quantifying the life cycle. Proc. Natl Acad. Sci. U.S.A. 105:4957–4962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Tsuchiya E, Shakuto S, Miyakawa T, Fukui S (1988) Characterization of a DNA uptake reaction through the nuclear membrane of isolated yeast nuclei. J. Bacteriol. 170:547–551

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Vandamme J, Castermans D, Thevelein JM (2012) Molecular mechanisms of feedback inhibition of protein kinase A on intracellular cAMP accumulation. Cell. Signal. 24:1610–1618

    Article  CAS  PubMed  Google Scholar 

  86. Wattiaux R, Laurent N, Wattiaux-De Coninck S, Jadot M (2000) Endosomes, lysosomes: their implication in gene transfer. Adv. Drug Deliv. Rev. 41:201–208

    Article  CAS  PubMed  Google Scholar 

  87. Zheng HZ, Liu HH, Chen SX, Lu ZX, Zhang ZL, Pang DW, Xie ZX, Shen P (2005) Yeast transformation process studied by fluorescence labeling technique. Bioconjug Chem. 16:250–254

    Article  CAS  PubMed  Google Scholar 

  88. Zörgö E, Chwialkowska K, Gjuvsland AB, Garré E, Sunnerhagen P, Liti G, Blomberg A, Omholt SW, Warringer J (2013) Ancient evolutionary trade-offs between yeast ploidy states. PLoS Genet. 9:e1003388

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I wish to thank Dr. Željko Svedružić (Faculty of Medicine, University of Rijeka) for critical reading of the manuscript and improving the English.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petar Tomev Mitrikeski.

Additional information

This article is dedicated to my late father who fostered my love for natural sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrikeski, P.T. Ecologically Driven Competence for Exogenous DNA Uptake in Yeast. Curr Microbiol 70, 883–893 (2015). https://doi.org/10.1007/s00284-015-0808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-015-0808-8

Keywords

Navigation