Current Microbiology

, Volume 63, Issue 2, pp 173–180

Isolation of a Leptothrix Strain, OUMS1, from Ocherous Deposits in Groundwater

Authors

  • Michinori Sawayama
    • Department of Material Chemistry, Graduate School of Natural Science and TechnologyOkayama University
  • Tomoko Suzuki
    • Department of Material Chemistry, Graduate School of Natural Science and TechnologyOkayama University
  • Hideki Hashimoto
    • Department of Material Chemistry, Graduate School of Natural Science and TechnologyOkayama University
  • Tomonari Kasai
    • Department of Material Chemistry, Graduate School of Natural Science and TechnologyOkayama University
  • Mitsuaki Furutani
    • Department of Material Chemistry, Graduate School of Natural Science and TechnologyOkayama University
  • Naoyuki Miyata
    • Department of Biological EnvironmentAkita Prefectural University
  • Hitoshi Kunoh
    • Department of Material Chemistry, Graduate School of Natural Science and TechnologyOkayama University
    • Department of Material Chemistry, Graduate School of Natural Science and TechnologyOkayama University
Article

DOI: 10.1007/s00284-011-9957-6

Cite this article as:
Sawayama, M., Suzuki, T., Hashimoto, H. et al. Curr Microbiol (2011) 63: 173. doi:10.1007/s00284-011-9957-6

Abstract

Leptothrix species in aquatic environments produce uniquely shaped hollow microtubules composed of aquatic inorganic and bacterium-derived organic hybrids. Our group termed this biologically derived iron oxide as “biogenous iron oxide (BIOX)”. The artificial synthesis of most industrial iron oxides requires massive energy and is costly while BIOX from natural environments is energy and cost effective. The BIOX microtubules could potentially be used as novel industrial functional resources for catalysts, adsorbents and pigments, among others if effective and efficient applications are developed. For these purposes, a reproducible system to regulate bacteria and their BIOX productivity must be established to supply a sufficient amount of BIOX upon industrial demand. However, the bacterial species and the mechanism of BIOX microtubule formation are currently poorly understood. In this study, a novel Leptothrix sp. strain designated OUMS1 was successfully isolated from ocherous deposits in groundwater by testing various culture media and conditions. Morphological and physiological characters and elemental composition were compared with those of the known strain L. cholodnii SP-6 and the differences between these two strains were shown. The successful isolation of OUMS1 led us to establish a basic system to accumulate biological knowledge of Leptothrix and to promote the understanding of the mechanism of microtubule formation. Additional geochemical studies of the OUMS1-related microstructures are expected provide an attractive approach to study the broad industrial application of bacteria-derived iron oxides.

Abbreviations

BIOX

Biogenous iron oxide

DAPI

4′,6-Diamidino-2-phenylindole

EDX

Energy-dispersive X-ray spectroscopy

GP

Groundwater phosphate

ICP

Inductively coupled plasma mass spectrometry

MSV

Mineral solution vitamin

MSVP

Mineral solution vitamin pyruvate

SEM

Scanning electron microscopy

SIGP

Silicon iron glucose peptone

Copyright information

© Springer Science+Business Media, LLC 2011