[1]

S. Albeverioa, M. Pratsiovytyie, and G. Torbine G, “Topological and fractal properties of real numbers which are not normal”.* Bulletin des Sciences Mathématiques*, **129** (2005), 615–630.

[2]

J.-P. Allouche and J. Shallit,* Automatic Sequences: Theory, Applications, Generalizations*. Cambridge University Press, Cambridge, 2003.

[3]

D. H. Bailey and J. M. Borwein, “Normal numbers and pseudorandom generators,” *Proceedings of the Workshop on Computational and Analytical Mathematics in Honour of Jonathan Borwein’s 60th Birthday*, Springer, 2012, in press.

[4]

D. H. Bailey, J. M. Borwein, C. S. Calude, M. J. Dinneen, M. Dumitrescu, and A. Yee, “An empirical approach to the normality of pi”. *Experimental Mathematics*, 2012; in press.

[5]

D. H. Bailey, J. M. Borwein, R. E. Crandall, and C. Pomerance. “On the binary expansions of algebraic numbers”.* Journal of Number Theory Bordeaux*,** 16** (2004), 487–518.

[6]

M. Barnsley,* Fractals Everywhere*, Academic Press, Inc., Boston, MA, 1988.

[7]

D. H. Bailey, P. B. Borwein, and S. Plouffe, “On the rapid computation of various polylogarithmic constants”.* Mathematics of Computation*,** 66**, no. 218 (1997), 903–913.

[8]

D. H. Bailey and D. J. Broadhurst, “Parallel integer relation detection: Techniques and applications”.* Mathematics of Computation*, **70**, no. 236 (2000), 1719–1736.

[9]

D. H. Bailey and R. E. Crandall, “On the random character of fundamental constant expansions”.* Experimental Mathematics*, **10**, no. 2 (2001), 175–190.

[10]

D. H. Bailey and R. E. Crandall, “Random generators and normal numbers,”* Experimental Mathematics*, **11** (2002), no. 4, 527–546.

[11]

D. H. Bailey and M. Misiurewicz, “A strong hot spot theorem,” *Proceedings of the American Mathematical Society*, **134** (2006), no. 9, 2495–2501.

[12]

G. Barat, R. F. Tichy, and R. Tijdeman, Digital blocks in linear numeration systems. *Number theory in progress*, **2** (Zakopane-Kościelisko, 1997), de Gruyter, Berlin (1999), 607–631.

[13]

M. N. Barber and B. W. Ninham,* Random and Restricted Walks: Theory and Applications*, Gordon and Breach, New York, 1970.

[14]

A. Belshaw and P. B. Borwein, “Champernowne’s number, strong normality, and the X chromosome,” *Proceedings of the Workshop on Computational and Analytical Mathematics in Honour of Jonathan Borwein’s 60th Birthday*, Springer, 2012, in press.

[15]

L. Berggren, J. M. Borwein, and P. B. Borwein,* Pi: a Source Book*, Springer-Verlag, Third Edition, 2004.

[16]

J. M. Borwein and D. H. Bailey,* Mathematics by Experiment: Plausible Reasoning in the 21st Century*, 2nd ed., A. K. Peters, Natick, MA, 2008.

[17]

J. Borwein, D. Bailey, N. Calkin, R. Girgensohn, R. Luke, V. Moll,* Experimental Mathematics in Action*. A. K. Peters, Natick, MA, 2007.

[18]

J. M. Borwein and P. B. Borwein, *Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity*, John Wiley, New York, 1987, paperback 1998.

[19]

J. M. Borwein, P. B. Borwein, R. M. Corless, L. Jörgenson, and N. Sinclair, “What is organic mathematics?” *Organic mathematics* (Burnaby, BC, 1995), CMS Conf. Proc., **20**, Amer. Math. Soc., Providence, RI, 1997, 1–18.

[20]

P. B. Borwein, “On the irrationality of certain series.” *Math. Proc. Cambridge Philos. Soc.*
** 112** (1992) 141–146.

[21]

P. B. Borwein and L. Jörgenson, “ Visible structures in number theory,”* Amer. Math. Monthly*
** 108** (2001), no. 10, 897–910.

[22]

C. S. Calude, “Borel normality and algorithmic randomness,” in G. Rozenberg, A. Salomaa (eds.),* Developments in Language Theory*, World Scientific, Singapore, 1994, 113–129.

[23]

C.S. Calude,* Information and Randomness: An Algorithmic Perspective*, 2nd ed., Revised and Extended, Springer-Verlag, Berlin, 2002.

[24]

D. G. Champernowne, “The construction of decimals normal in the scale of ten.”* Journal of the London Mathematical Society*,** 8** (1933) 254–260.

[25]

M. Coons, “(Non)automaticity of number theoretic functions,”* J. Théor. Nombres Bordeaux*,** 22** (2010), no. (2), 339–352.

[26]

A. H. Copeland and P. Erdős, “Note on normal numbers,”* Bulletin of the American Mathematical Society*,** 52** (1946), 857–860.

[27]

R. E. Crandall, “The googol-th bit of the Erdős–Borwein constant,” *Integers*, A23, 2012.

[28]

M. Dekking, M. Mendès France, and A. van der Poorten, “Folds,”* Math. Intelligencer*
** 4** (1982), no. 3, 130–138.

[29]

M. Dekking, M. Mendès France, and A. van der Poorten, “Folds II,”* Math. Intelligencer*
** 4** (1982), no. 4, 173–181.

[30]

M. Dekking, M. Mendès France, and A. van der Poorten, “Folds III,”* Math. Intelligencer*
** 4**(1982), no. (4), 190–195.

[31]

D. Y. Downham and S. B. Fotopoulos, “The transient behaviour of the simple random walk in the plane,”* J. Appl. Probab.*
** 25** (1988), no. 1, 58–69.

[32]

D. Y. Downham and S. B. Fotopoulos, “A note on the simple random walk in the plane,” *Statist. Probab. Lett.*, 17 (1993), no. 3, 221–224.

[33]

A. Dvoretzky and P. Erdős, “Some problems on random walk in space,” *Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability*, (1951), 353–367.

[34]

P. Hertling, “Simply normal numbers to different bases,”* Journal of Universal Computer Science*,** 8**, no. 2 (2002), 235–242.

[35]

H. J. Jeffrey, Chaos game representation of gene structure,* Nucl. Acids Res.*
** 18** no 2, (1990) 2163–2170.

[36]

B. D. Hughes,* Random Walks and Random Environments*,* Vol. 1. Random Walks*, Oxford Science Publications, New York, (1995).

[37]

H. Kaneko, “On normal numbers and powers of algebraic numbers,”* Integers*,** 10** (2010), 31–64.

[38]

D. Khoshnevisan, “Normal numbers are normal,”* Clay Mathematics Institute Annual Report* (2006), 15 & 27–31.

[39]

G. Marsaglia, “On the randomness of pi and other decimal expansions,” preprint, 2010.

[40]

G. Martin, “Absolutely abnormal numbers,”* Amer. Math. Monthly*,** 108** (2001), no. 8, 746-754.

[41]

J. Mah and J. Holdener, “When Thue–Morse meets Koch,”* Fractals*,** 13** (2005), no. 3, 191–206.

[42]

S. M. Ross,* Stochastic Processes*. John Wiley & Sons, New York, 1983.

[43]

R. Stoneham, “On absolute \((j, \varepsilon)\)-normality in the rational fractions with applications to normal numbers,”* Acta Arithmetica*,** 22** (1973), 277–286.

[44]

M. Queffelec, “Old and new results on normality,” *Lecture Notes – Monograph Series*, **48**, *Dynamics and Stochastics*, 2006, Institute of Mathematical Statistics, 225–236.

[45]

W. Schmidt, “On normal numbers,” *Pacific Journal of Mathematics*, **10** (1960), 661–672.

[46]

A. J. Yee, “y-cruncher-multi-threaded pi program,”

http://www.numberworld.org/y-cruncher, 2010.

[47]

A. J. Yee and S. Kondo, “10 trillion digits of pi: A case study of summing hypergeometric series to high precision on multicore systems,” preprint, 2011, available at

http://hdl.handle.net/2142/28348.