, Volume 72, Issue 5, pp 1143-1147
Date: 14 Sep 2013

Calcium carbonate does not affect nilotinib pharmacokinetics in healthy volunteers

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

What is already known about this subject

Gastric upset is a common side effect of nilotinib therapy, and calcium carbonate is frequently used concomitantly, either as antacid or as calcium supplementation. With the increasing number of oral agents in cancer therapy, oral drug–drug interactions are becoming more relevant. Nilotinib has already been shown to be absorbed to a much lesser extent when co-administered with proton pump inhibitors. Because exposure to sub-therapeutic concentrations of anticancer drugs such as nilotinib may result in selection of resistant clones and ultimately relapse, we studied the effect of a calcium carbonate supplement (Tums Ultra 1000®) on nilotinib pharmacokinetics.

What this study adds

Calcium carbonate may be co-administered with nilotinib without significantly affecting the pharmacokinetics of nilotinib and potentially impacting efficacy.

Purpose

Nilotinib is a second-generation oral tyrosine kinase inhibitor with superior efficacy compared with imatinib mesylate in the treatment for chronic phase chronic myelogenous leukemia. Calcium carbonate is commonly used as a source of calcium supplementation or as antacid to ameliorate the gastrointestinal side effects associated with nilotinib, which could have unknown effects on nilotinib absorption. The purpose of this study was to provide information on the effect of calcium carbonate on the PK of nilotinib in healthy volunteers.

Methods

Healthy subjects were enrolled in a two-period, open-label, single-institution, randomized, cross-over, fixed-schedule study. In one period, each subject received 400 mg of nilotinib p.o. In the other period, 4,000 mg of calcium carbonate (4 X Tums Ultra 1000®) was administered p.o. 15 min prior to the nilotinib dose. Plasma samples were collected at specified timepoints, concentrations of nilotinib were quantitated by LC–MS, and data were analyzed non-compartmentally.

Results

Eleven subjects were evaluable. Calcium supplementation did not significantly affect nilotinib pharmacokinetic parameters including area under the plasma concentration versus time curve (18.4 μg/mL h alone vs. 16.9 μg/mL h with calcium carbonate, p = 0.83; 80 % power); maximum plasma concentration (C max) (0.670 μg/mL alone vs. 6.18 μg/mL with calcium carbonate, p = 0.97); or half-life (18.9 h alone vs. 17.2 h with calcium carbonate, p = 0.18).

Conclusions

Our results indicate that the use of calcium carbonate does not significantly affect nilotinib pharmacokinetics.