Skip to main content

Advertisement

Log in

A biomarker profile for predicting efficacy of cisplatin–vinorelbine therapy in malignant pleural mesothelioma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Malignant pleural mesothelioma (MPM) has a dismal prognosis. Treatment results may be improved by biomarker-directed therapy. We investigated the baseline expression and impact on outcome of predictive biomarkers ERCC1, BRCA1, and class III β-tubulin in a cohort of MPM patients treated with cisplatin–vinorelbine. We further explored the possibility of combining markers into a treatment-response profile to increase the predictive power.

Methods

Formalin-fixed paraffin-embedded tumor specimens from 54 MPM patients included in a phase II trial were evaluated for ERCC1, BRCA1, and class III β-tubulin by immunohistochemistry (IHC). Immunostaining was quantified by an H-score and dichotomized according to upper quartile values. The ERCC1- and class III β-tubulin-status classified patients as treatment resistant (ERCC1 positive + class III β-tubulin positive) or treatment responsive (ERCC1 negative + class III β-tubulin negative). The remaining marker combinations were considered inconclusive.

Results

Fifty patients had tumor tissue available for IHC. Eleven had a responsive profile, and nine had a resistant profile. Thirty patients had an inconclusive profile. Median progression-free survival (PFS) was 6.7 months in the treatment-resistant group, 15.3 months in the treatment-responsive group, and 8.1 months in the inconclusive group (log-rank p = 0.03). Multivariate analysis revealed that treatment-resistant patients had a decreased PFS and overall survival (OS) compared with the treatment-responsive patients (HR 6.45, CI 95 % [2.02–20.64] p = 0.002 and HR 4.64, CI 95 % [1.56–13.79], p = 0.006, respectively). BRCA1 status was associated with neither PFS nor OS.

Conclusion

Combined negative ERCC1 and class III β-tubulin immunostaining is associated with significantly prolonged PFS and OS in MPM patients receiving cisplatin–vinorelbine therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Churg A, Roggli V, Galateau-Salle F et al (2004) Mesothelioma. In: Travis WD, Brambilla E, Müller-Hermelink HK et al (eds) Pathology and genetics of tumours of the lung, pleura, thymus and heart. IARC press, Lyon, pp 128–136

    Google Scholar 

  2. Sorensen JB (2008) Current concepts in chemotherapy for malignant pleural mesothelioma. Clin Respir J 2:74–79

    Article  PubMed  Google Scholar 

  3. Carlson RW, Allred DC, Anderson BO et al (2009) Breast cancer. Clinical practice guidelines in oncology. J Natl Compr Canc Netw 7:122–192

    PubMed  CAS  Google Scholar 

  4. Gridelli C, De MF, Di MM et al (2011) Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: review of the evidence. Lung Cancer 71:249–257

    Article  PubMed  CAS  Google Scholar 

  5. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  PubMed  CAS  Google Scholar 

  6. Marchetti A, Martella C, Felicioni L et al (2005) EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol 23:857–865

    Article  PubMed  CAS  Google Scholar 

  7. Siddik ZH (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    Article  PubMed  CAS  Google Scholar 

  8. Martin LP, Hamilton TC, Schilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14:1291–1295

    Article  PubMed  CAS  Google Scholar 

  9. Vilmar AC, Santoni-Rugiu E, Sorensen JB (2010) ERCC1 and histopathology in advanced NSCLC patients randomized in a large multicenter phase III trial. Ann Oncol 21:1817–1824

    Article  PubMed  CAS  Google Scholar 

  10. Olaussen KA, Dunant A, Fouret P et al (2006) DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991

    Article  PubMed  CAS  Google Scholar 

  11. Steffensen KD, Waldstrom M, Jakobsen A (2009) The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer. Int J Gynecol Cancer 19:820–825

    Article  PubMed  Google Scholar 

  12. Kim KH, Do IG, Kim HS et al (2010) Excision repair cross-complementation group 1 (ERCC1) expression in advanced urothelial carcinoma patients receiving cisplatin-based chemotherapy. APMIS 118:941–948

    Article  PubMed  Google Scholar 

  13. Kennedy RD, Quinn JE, Mullan PB et al (2004) The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 96:1659–1668

    Article  PubMed  CAS  Google Scholar 

  14. Cass I, Baldwin RL, Varkey T et al (2003) Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 97:2187–2195

    Article  PubMed  CAS  Google Scholar 

  15. Taron M, Rosell R, Felip E et al (2004) BRCA1 mRNA expression levels as an indicator of chemoresistance in lung cancer. Hum Mol Genet 13:2443–2449

    Article  PubMed  CAS  Google Scholar 

  16. Tassone P, Blotta S, Palmieri C et al (2005) Differential sensitivity of BRCA1-mutated HCC1937 human breast cancer cells to microtubule-interfering agents. Int J Oncol 26:1257–1263

    PubMed  CAS  Google Scholar 

  17. Stordal B, Davey R (2009) A systematic review of genes involved in the inverse resistance relationship between cisplatin and paclitaxel chemotherapy: role of BRCA1. Curr Cancer Drug Targets 9:354–365

    Article  PubMed  CAS  Google Scholar 

  18. Quinn JE, Kennedy RD, Mullan PB et al (2003) BRCA1 functions as a differential modulator of chemotherapy-induced apoptosis. Cancer Res 63:6221–6228

    PubMed  CAS  Google Scholar 

  19. Mullan PB, Gorski JJ, Harkin DP (2006) BRCA1–a good predictive marker of drug sensitivity in breast cancer treatment? Biochim Biophys Acta 1766:205–216

    PubMed  CAS  Google Scholar 

  20. Kavallaris M (2010) Microtubules and resistance to tubulin-binding agents. Nat Rev Cancer 10:194–204

    Article  PubMed  CAS  Google Scholar 

  21. Gan PP, Pasquier E, Kavallaris M (2007) Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res 67:9356–9363

    Article  PubMed  CAS  Google Scholar 

  22. Seve P, Dumontet C (2008) Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol 9:168–175

    Article  PubMed  CAS  Google Scholar 

  23. Seve P, Isaac S, Tredan O et al (2005) Expression of class III {beta}-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clin Cancer Res 11:5481–5486

    Article  PubMed  CAS  Google Scholar 

  24. Seve P, Mackey J, Isaac S et al (2005) Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther 4:2001–2007

    Article  PubMed  CAS  Google Scholar 

  25. Vilmar AC, Santoni-Rugiu E, Sorensen JB (2011) Class III {beta}-tubulin in advanced NSCLC of adenocarcinoma subtype predicts superior outcome in a randomized trial. Clin Cancer Res 17:5205–5214

    Article  PubMed  CAS  Google Scholar 

  26. Tommasi S, Mangia A, Lacalamita R et al (2007) Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of beta-tubulins. Int J Cancer 120:2078–2085

    Article  PubMed  CAS  Google Scholar 

  27. Seve P, Reiman T, Lai R et al (2007) Class III beta-tubulin is a marker of paclitaxel resistance in carcinomas of unknown primary site. Cancer Chemother Pharmacol 60:27–34

    Article  PubMed  CAS  Google Scholar 

  28. Zimling ZG, Sorensen JB, Gerds TA et al (2012) Low ERCC1 expression in malignant pleural mesotheliomas treated with cisplatin and vinorelbine predicts prolonged progression-free survival. J Thorac Oncol 7:249–256

    Article  PubMed  CAS  Google Scholar 

  29. Sorensen JB, Frank H, Palshof T (2008) Cisplatin and vinorelbine first-line chemotherapy in non-resectable malignant pleural mesothelioma. Br J Cancer 99:44–50

    Article  PubMed  CAS  Google Scholar 

  30. Rusch VW (1996) A proposed new international TNM staging system for malignant pleural mesothelioma from the International Mesothelioma Interest Group. Lung Cancer 14:1–12

    Article  PubMed  CAS  Google Scholar 

  31. Byrne MJ, Nowak AK (2004) Modified RECIST criteria for assessment of response in malignant pleural mesothelioma. Ann Oncol 15:257–260

    Article  PubMed  CAS  Google Scholar 

  32. Francart J, Legrand C, Sylvester R et al (2006) Progression-free survival rate as primary end point for phase II cancer clinical trials: application to mesothelioma—The EORTC Lung Cancer Group. J Clin Oncol 24:3007–3012

    Article  PubMed  Google Scholar 

  33. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266:66–71

    Article  PubMed  CAS  Google Scholar 

  34. Marquis ST, Rajan JV, Wynshaw-Boris A et al (1995) The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nat Genet 11:17–26

    Article  PubMed  CAS  Google Scholar 

  35. Yoshikawa K, Honda K, Inamoto T et al (1999) Reduction of BRCA1 protein expression in Japanese sporadic breast carcinomas and its frequent loss in BRCA1-associated cases. Clin Cancer Res 5:1249–1261

    PubMed  CAS  Google Scholar 

  36. Cicchillitti L, Penci R, Di MM et al (2008) Proteomic characterization of cytoskeletal and mitochondrial class III beta-tubulin. Mol Cancer Ther 7:2070–2079

    Article  PubMed  CAS  Google Scholar 

  37. D’Addario G, Fruh M, Reck M et al (2010) Metastatic non-small-cell lung cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(Suppl 5):v116–v119

    Article  PubMed  Google Scholar 

  38. Ohishi Y, Oda Y, Basaki Y et al (2007) Expression of beta-tubulin isotypes in human primary ovarian carcinoma. Gynecol Oncol 105:586–592

    Article  PubMed  CAS  Google Scholar 

  39. Reiman T, Lai R, Veillard AS et al (2012) Cross-validation study of class III beta-tubulin as a predictive marker for benefit from adjuvant chemotherapy in resected non-small-cell lung cancer: analysis of four randomized trials. Ann Oncol 23:86–93

    Article  PubMed  CAS  Google Scholar 

  40. Ikeda S, Takabe K, Suzuki K (2009) Expression of ERCC1 and class IIIbeta tubulin for predicting effect of carboplatin/paclitaxel in patients with advanced inoperable non-small cell lung cancer. Pathol Int 59:863–867

    Article  PubMed  CAS  Google Scholar 

  41. Azuma K, Sasada T, Kawahara A et al (2009) Expression of ERCC1 and class III beta-tubulin in non-small cell lung cancer patients treated with carboplatin and paclitaxel. Lung Cancer 64:326–333

    Article  PubMed  Google Scholar 

  42. Steele JP, Shamash J, Evans MT et al (2000) Phase II study of vinorelbine in patients with malignant pleural mesothelioma. J Clin Oncol 18:3912–3917

    PubMed  CAS  Google Scholar 

  43. Camp RL, Chung GG, Rimm DL (2002) Automated subcellular localization and quantification of protein expression in tissue microarrays. Nat Med 8:1323–1327

    Article  PubMed  CAS  Google Scholar 

  44. Gustavson MD, Bourke-Martin B, Reilly D et al (2009) Standardization of HER2 immunohistochemistry in breast cancer by automated quantitative analysis. Arch Pathol Lab Med 133:1413–1419

    PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Lone Svendstrup, Anne Jørgensen, and Margit Bæksted for excellent technical assistance. Thanks to N.Z. Sroczynski, TopoTarget, Copenhagen, Denmark, for the kind donation of the A2780 cell pellet. Thanks to Heidi R. Hudlebusch, BRIC, Copenhagen Biocenter, Denmark, for kindly providing the SH-SY5Y cell pellet. This work was funded by The Danish Cancer Society, the Harboe foundation, the Danielsen foundation, and the Danish Lung Association.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarah Glad Zimling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimling, Z.G., Sørensen, J.B., Gerds, T.A. et al. A biomarker profile for predicting efficacy of cisplatin–vinorelbine therapy in malignant pleural mesothelioma. Cancer Chemother Pharmacol 70, 743–754 (2012). https://doi.org/10.1007/s00280-012-1965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1965-0

Keywords

Navigation